Convective Heating of the LIFE Engine Target During Injection

Dain S. Holdener, Mark S. Tillack, Xueren R. Wang
Center for Energy Research, University of California, San Diego, CA USA

Laser Inertial Fusion Energy (LIFE):
- A rep rate of 10-20 Hz is required for adequate power generation
- Chamber gas can be considered viscous (CFD ok), but density is low enough a direct simulation Monte Carlo (DSMC) solution is tractable on a PC platform

Design Requirement:
- Melting of either the DT ice or laser entrance hole (LEH) window constitutes target failure and no burn

Target Evolution has been Investigated:

Target flight conditions (TFC):

Heat flux along hohlraum bodies:
- Heat transfer along hohlraum’s body predicted well by ANSYS and DS2V with following correlations:
 - From Bird (1994):
 - Overall Knudsen number can be misleading
 - Suggests using a ‘local Knudsen number,’ Kn*, where the characteristic length is the scale length of macroscopic gradients (such as density):
 \[
 Kn^* = \frac{d}{\lambda_L} \left(\frac{d}{\rho} \right) \frac{d}\{\frac{d}{\rho} d\}
 \]
 - Errors in Navier-Stokes result for Kn* above 0.1 and is hardly usable for Kn* above 0.2
 - A maximum Kn* of 0.17 was found, suggesting the continuum models are beginning to break down
- Inclusion of baffles has shown to reduce the heat transfer to the LEH windows as much as 8-10x for the original target flight conditions
- Inclusion of baffles will dramatically decrease heat transfer to LEH windows
- Internal helium acts as a heat sink to cool the LEH windows and heat fuel capsule
- Testing is warranted once final conditions have been set

Conclusions and Recommendations:

Internal Transient Heating Analysis:
- Adiabatic heating using lumped capacitance method shows the 0.5 µm thick LEH window has very little thermal resistance
- The combination of target spinning and heating through the LEH windows induce buoyancy driven swirling effects, cooling the window and heating the capsule
- The temperature of the LEH windows steadily increased as a function of heat transfer coefficient, h, over windows
- Helium near the capsule rises less than 1 K for h less than 27 W/m²-K

DS2V velocity comparison with (top) and without (bottom) baffles

Temperature along Stagnation Line

Velocity along Stagnation Line

Pressure along Stagnation Line

Density along Stagnation Line

Note: P2 shields, tent and fuel capsule have been omitted from schematic