

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Energy Storage Research At UC San Diego

CER Seminar

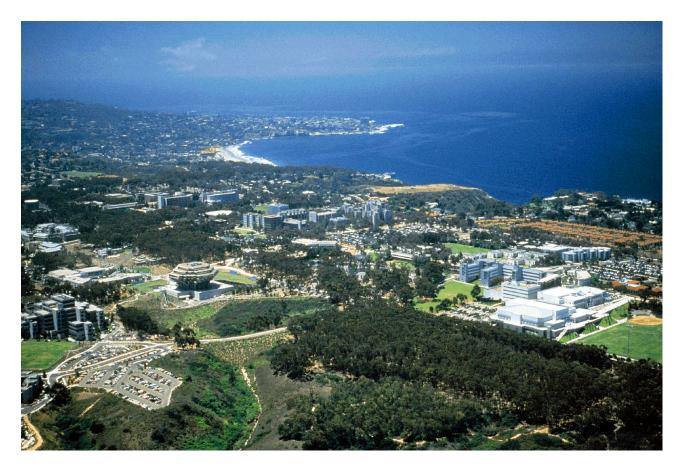
William V. Torre Center for Energy Research University of California - San Diego

February 25, 2015

email: wtorre@ucsd.edu

CONTRACTOR OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering


Campus Quick Facts

With a daily population of over 45,000, UC San Diego is the size and complexity of a small city.

As a research and medical institution, we have **TWO** times the energy density of commercial buildings

12 million sq. ft. of buildings, \$200M/yr of building growth

Self generate 92% of annual demand •30 MW natural gas Cogen plant •2.8 MW of Fuel Cells installed •2.2 MW of Solar PV installed, with another 0.8 MW planned in 2013

UCSD Energy Storage Research Program

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Objectives

- Accommodate Higher Levels of Renewable Generation: Mitigate impacts and accommodate higher levels of renewable generation
- Improve Operational Capability of Energy Storage: Develop and test new control algorithms and integrate solar forecasting
- Grid Integration of Energy Storage: Identify energy storage integration issues and develop cost effective solutions (i.e. smart inverters, advanced controls, etc.)
- Advance Energy Storage Technology: Test new energy storage technologies and battery chemistries to improve cost effectiveness and performance
- Promote Commercial Development: Provide a test bed for energy storage companies to test their technology, Energy Research Park development capable of grid connected testing of multiple energy storage systems
- Optimize Resources, Microgrid Operations: UCSD's energy storage projects are also designed and controlled to optimize generation resource utilization and reduce microgrid operational costs and greenhoue gas emissions.

UCSD Energy Storage Projects at UCSD

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Operational (2014)

- 10 kW, Sunverge, Scripps Institute of Oceanography
- 108 kW, 180 kWh BMW, demonstration of application of 2 nd use EV batteries, coupling to 330 kW PV, and Fast EV Level 2
- 3.8 Million Gallon Thermal Energy Storage Tank

In Design (To be operational 2015)

- 2.5 MW, 5 Mwhr, SGIP Advanced Energy Storage, Lithium-ion from BYD
- 25 kW / 40 kWh Amber Kinetics, Flywheel energy storage
- 28 kW, Maxwell Labs, Ultracapacitors, CPV smoothing of intermittency, coupled with solar forecasting
- MCV 35 kW, 35 kWh Compact Li-Ion energy storage system
- NRG 100 kWh Li-ion, PV integrated energy storage with EV DC Fast Charging

Future Planned

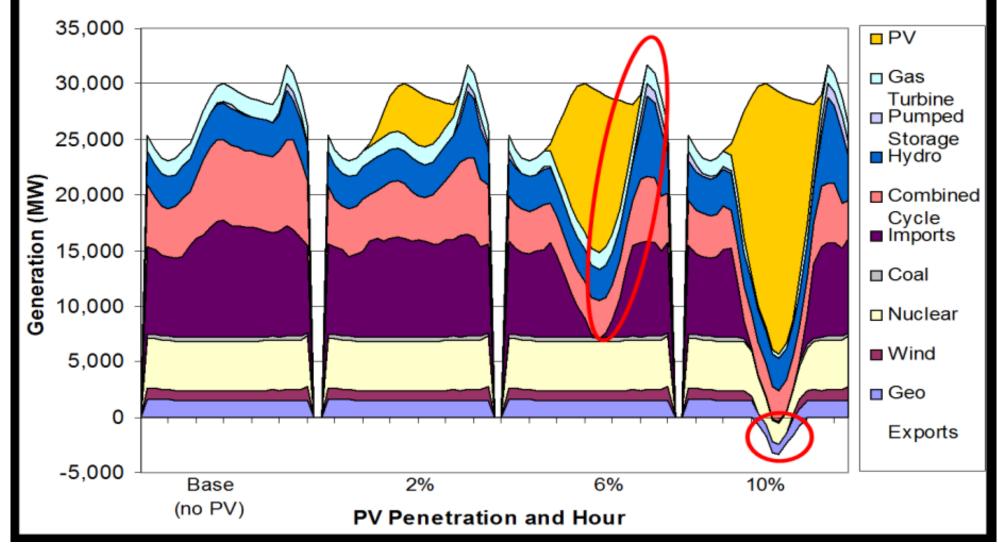
730 kW, 1460 kwhr SGIP PV Integrated, five off campus sites

De-commissioned

- 30 kw, 30 kWh, 30 kW PV integrated, Li-Ion battery
- **ZBB 100 kW/ 300 kWh kW Flow Battery** Research R.A. de Callafon, Dept. of MAE, UCSD

CONTRACTOR OF CALIFORNIA, SAN DIEGO

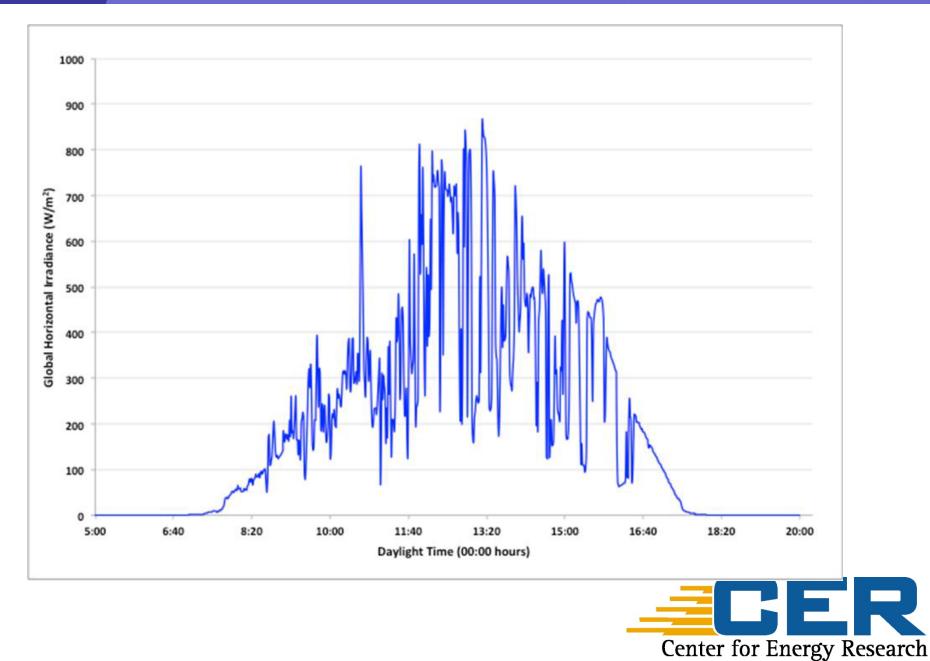
Jacobs School of Engineering


- Establish major third party battery testing facility on West Coast
- Both lab testing and grid connected testing capability
- Tests protocols will represent real world grid scale applications
- Up to 100 kva batteries, capability to test 10 battery packs simultaneously
- Lab cell diagnostics and performance evaluation
- Economic valuation and commercial viability assessment

Research R.A. de Callafon, Dept. of MAE, UCSD

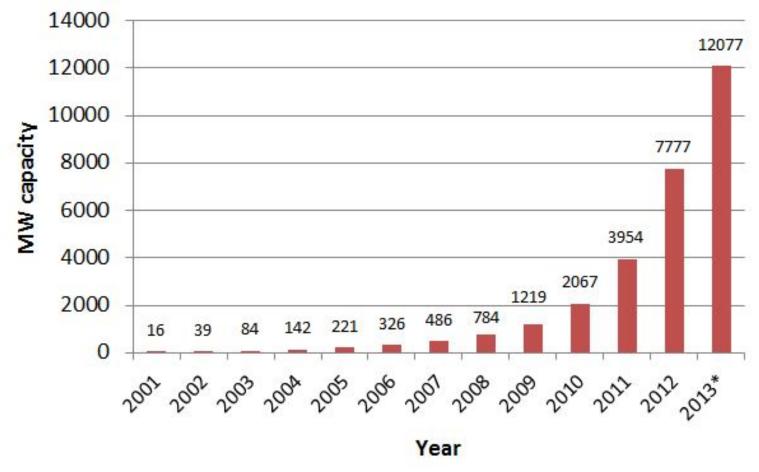
Higher Levels of Renewables Driving Energy Storage

UNIVERSITY OF CALIFORNIA, SAN DIEGO



UCSD Variability and Intermittency Impact Mitigation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

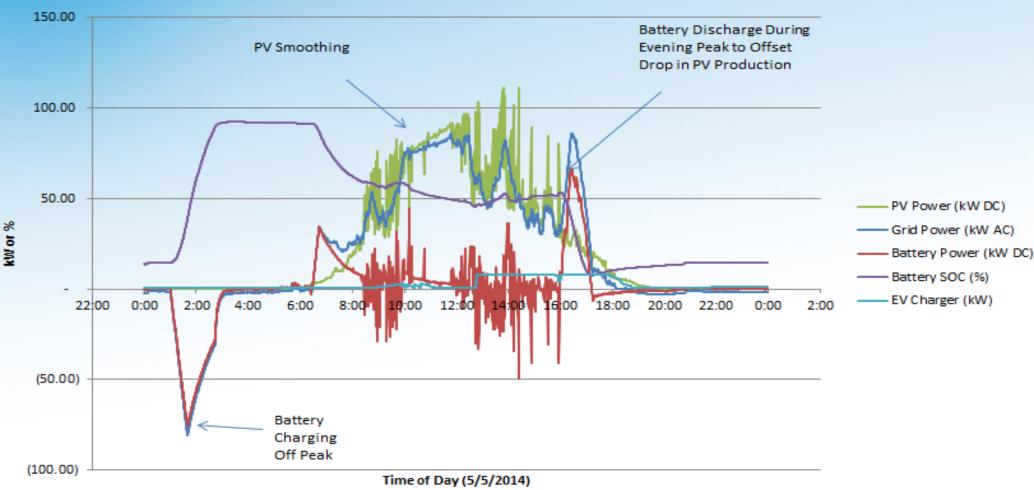

Jacobs School of Engineering

UCSD Installation of Solar PV Is Rapidly Increasing

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

U.S. Solar Capacity (MW)



UCSD Solar-to-EV Project – Peak Smoothing

UNIVERSITY OF CALIFORNIA, SAN DIEGO

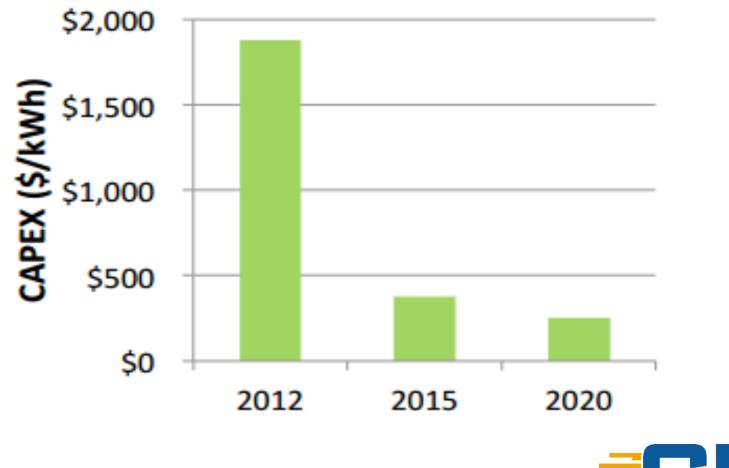
Jacobs School of Engineering

San Diego Zoo Solar to EV Project PV Smoothing and Peak Shifting from Battery

UCSD California Energy Storage Procurement Targets

UNIVERSITY OF CALIFORNIA, SAN DIEGO

	Sample Uses or Services			ent Target 1325 MW)	S
		2014	2016	2018	2020
TRANSMISSION	 Bulk Storage (Stand-Alone and Co-located) Ancillary Services Voltage Support 	110 MW	145 MW	192 MW	253 MW
DISTRIBUTION	 Substation Energy Storage DG Storage 	67 MW	90 MW	115 MW	153 MW
BEHIND THE METER (CUSTOMER	 Load Shifting Vehicle Charging 	23 MW	35 MW	58 MW	84 MW
		Total: 200 MW	Total: 270 MW	Total: 365 MW	Total: 490 MW



UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

NEDO/DOE 2010 Li Ion Cost Projections

CONTRACTOR OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Energy Storage Applications

Electric Energy Time-shift Electric Supply Capacity Load Following **Area Regulation Electric Supply Reserve Capacity** Voltage Support **Transmission Support Transmission Congestion Relief** T&D Upgrade Deferral Substation On-site Power Time-of-use Energy Cost Management **Demand Charge Management Electric Service Reliability Electric Service Power Quality Renewables Energy Time-shift Renewables Capacity Firming** Wind Generation Grid Integration

Important Metrics per Duty Cycle

1)Annual operational days/hours

2)Number of cycles per given time period

3) Average DOD per cycle

4)Energy throughput per kWh of available capacity

5)Financial value per kWh

6)Value per kWh of available energy capacity and C-rate

Panasonic/Sanyo PV Integration Storage

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UCSD Demonstration of PV Intermittency Smoothing

UNIVERSITY OF CALIFORNIA, SAN DIEGO

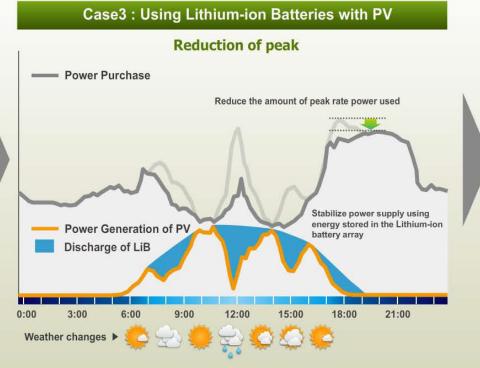
Jacobs School of Engineering

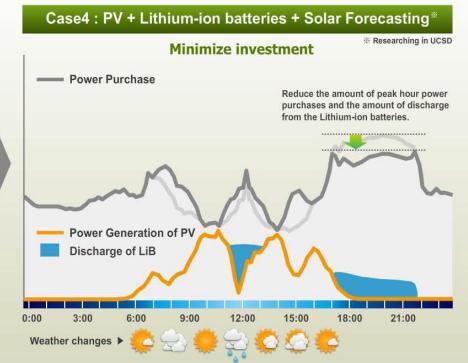
Panasonic/Sanyo fully integrated 30 kW PV and 30 kWh electric energy storage

- Solar Forecasting System coupled to energy storage controls to mitigate intermittency
- Peak shaving to reduce the energy use/cost.
- Provide stable and efficient energy.
- Ancillary Function (emergency power back up for communication etc

Energy Storage PV Intermittency Smoothing

UNIVERSITY OF CALIFORNIA, SAN DIEGO


Jacobs School of Engineering


Smart Energy System

SANYO

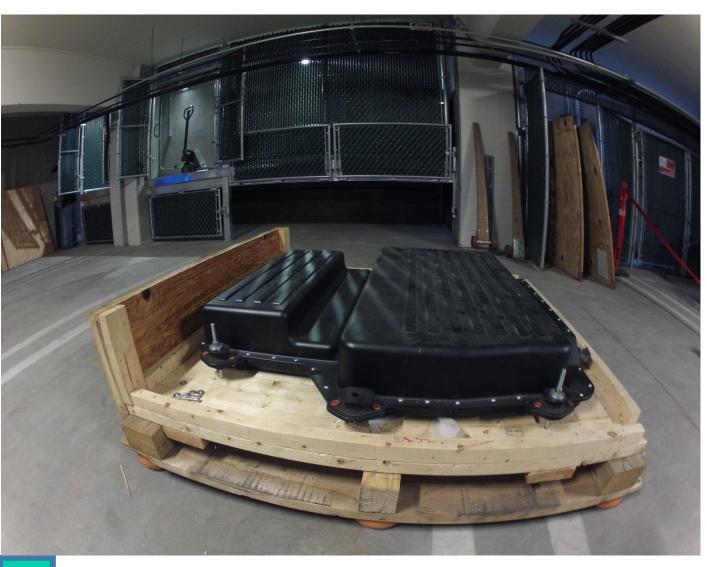
III Example : Minimize grid power purchasing

With lithium-ion batteries used together with the PV system, the power "gaps" can be filled with the energy stored in the batteries to reduce the amount of peak hour power purchases. This will require a lot of power to be discharged from the batteries, however.

Solar Forecasting can be used to predict the amount of PV power generation with weather changes. With this information, the lithium-ion batteries can be used more efficiently. This will result in a reduction of not only peak power purchased but battery capacity.

CONTRACTOR OF CALIFORNIA, SAN DIEGO

- ZBB EnerStore V3 -25 kW / 50 kWh
- DC Efficiency up to 76%
- Six units with 300 kWh total capacity
- Directly coupled with 60 kW of roof top PV
- Control system designed to reduce peak load demand requirements at East Campus Chiller Plant



UCSD Repurposed (2nd Life) Electric Vehicle Battery Testing

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

120 kW/ 60 kWh of total energy storage capacity

•

- Test stand linked to Microgrid control system and remotely controlled.
- Plug-in vehicle batteries degraded to 70-80% of original power or energy capacity are insufficient for automotive use
- May provide a low cost source for stationary energy storage applications

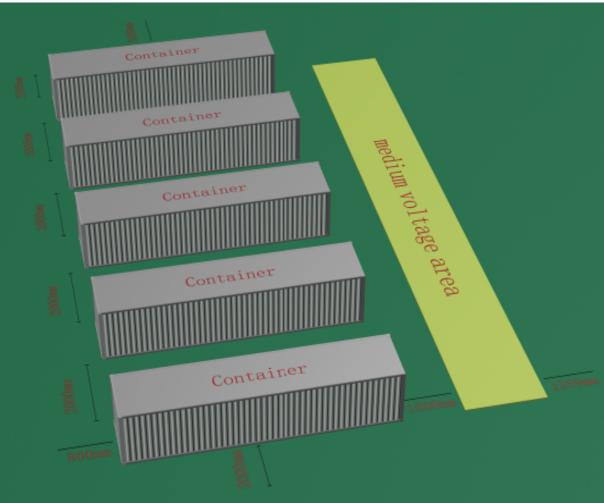
CONTRACT BMW 2nd Use EV Battery Energy Storage UNIVERSITY OF CALIFORNIA, SAN DIEGO

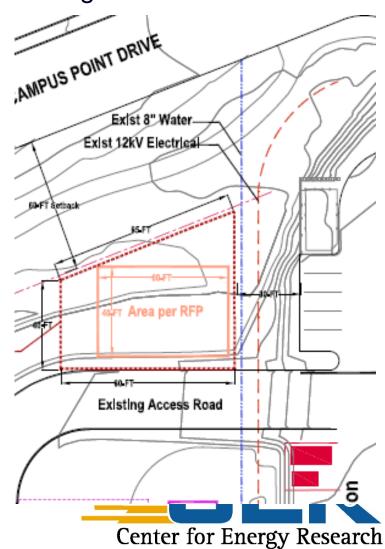
Jacobs School of Engineering

Objective:

Demonstrate the feasibility of integrating and controlling multiple 2nd life repurposed MINI E battery systems, with additional integration of PV solar array and the UCSD micro grid for a three year period.

Research possibilities and value:


- Investigate test applications and load profiles.
- Results will lead to better understanding of different use cases and possible B2U scenarios
- Identify control issues related to managing multiple repurposed EV batteries with a different state of charge.
- First full scale energy storage system with repurposed EV batteries..



CSDUCSD SGIP Bulk Energy Storage Project

UNIVERSITY OF CALIFORNIA, SAN DIEGO

- 2.5 MW, 5 MWhr, bulk energy storage
- Reduce Peak Campus demand energy cost production
- Integrated with PV and fuel cell and campus cooling load

UCSD Maxwell Labs Ultracapacitor Energy Storage

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Key Design Parameters

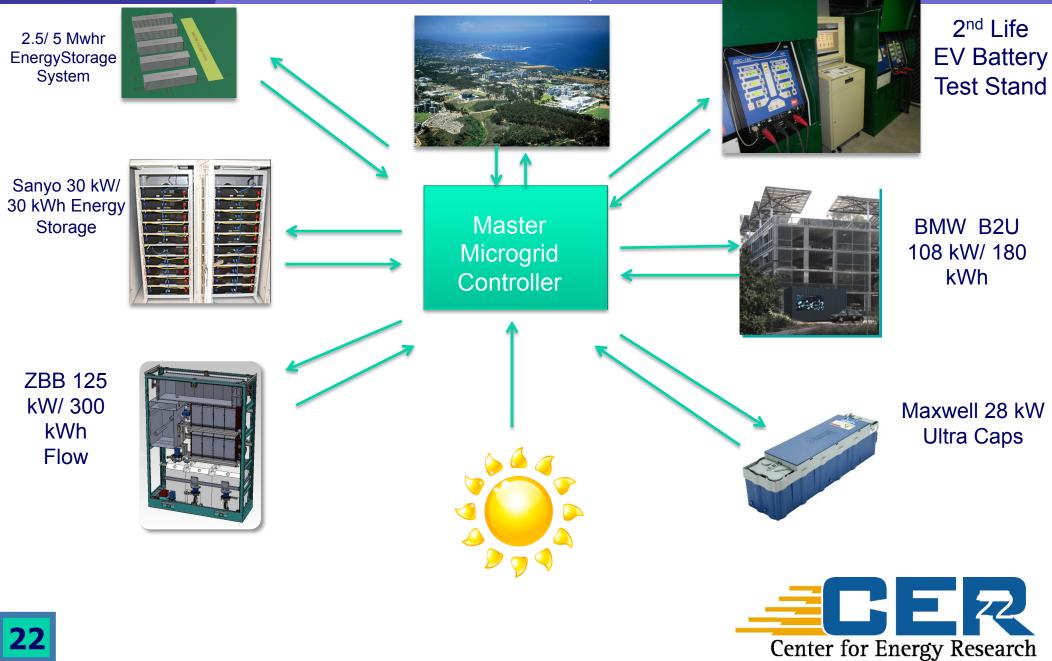
- Phase I: 28 kW, 5 minute energy storage
- Phase II: 250 kW, 5 minute energy storage
- PV solar smoothing and firming, improve PV ramping
- Coupled with 28 kW Concentrated PV
- Control Strategies to be tested
- Solar predictive forecasting coupled with cont systems
- Schedule: June, 2013 Nov. 2015

UCSD Real Time Control of High Resolution Data

UNIVERSITY OF CALIFORNIA, SAN DIEGO

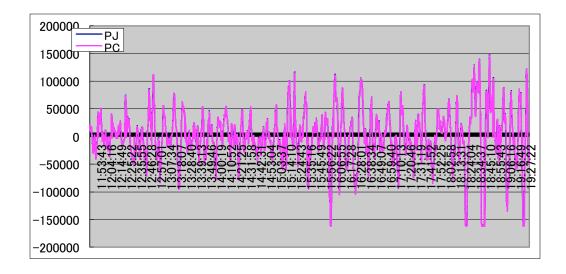
82999329999999999	368888888888888888888888888888888888888			
		Daily	Monthly	Year-To-Date
1	Total Campus Load	253954.10 kW	3122146.00 kW	3652462.75 kW
	Co-Gen	13753.00 kW	169081.00 kW	197800.50 kW
2	Total Solar	24.94 kW	306.59 kW	358.66 kW
	Carbon Footprint	17700.12 lbs	217607.81 lbs	254569.97 lbs
Quality of Power		5717.98 kW	70297.59 kW	82238.35 kW

iridityenergy				
0 40 80	120 160 200		30 120 160 200	
0 40 80 120 160 200 Supply Costs (\$)		Net Economic Benefit (\$)		
Supply C	Costs (\$)	Net Ec	onomic Benefit (\$)	
Supply C	Costs (\$) Daily	Net Ec Monthly	onomic Benefit (\$) Yearly	
Optimized Costs	Daily	Monthly	Yearly	
Supply C Optimized Costs Base Costs Cost Savings	Daily \$ 49482.53	Monthly \$ 1484475.90	Yearly \$ 18061123.45	

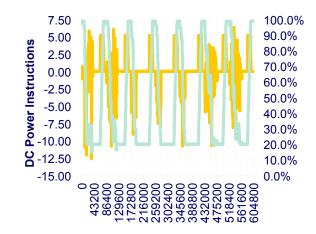


Control and Dispatch of Distributed Energy Storage

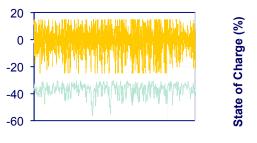
UNIVERSITY OF CALIFORNIA, SAN DIEGO


Jacobs School of Engineering

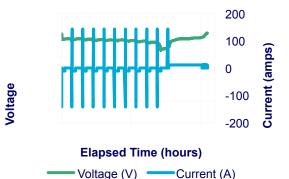
UCSD Campus Load and Generation Requirements



CONTROL OF CALIFORNIA, SAN DIEGO


Jacobs School of Engineering

Demand Charge Management (DCM)



Intended Performance of Battery

Pulse Characterization Test

UCSD Summary of UCSD's Energy Storage Program

UNIVERSITY OF CALIFORNIA, SAN DIEGO

- Large diversified energy storage projects in university setting
- Planning to grow collaboration with DOE/SNL on energy storage
- Centralized and Distributed intelligence to control energy storage fleet dispatch
- Living laboratory for testing and determining the benefits for various energy storage technologies
- Lab To Market proven capability
- Valuable research to aid integration of increasing levels of renewables
- Opportunity to realize benefits in a true microgrid operational setting

Thank You !

UNIVERSITY OF CALIFORNIA, SAN DIEGO

