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Motivation 

 Combustion-generated pollutants, in particular NOX and carbonaceous soot, may 

be significantly reduced by use of lean-burning combustion systems in gas-turbine 

engines. However, as the fuel-air mixture becomes lean, small perturbations in the flow 

can change the unsteady heat-release pattern, and if the heat release is in-phase with the 

acoustic pressure fluctuations in the combustor, the fluctuations can grow into high-

amplitude oscillations, typically at frequencies in the 100-500 Hz range. These 

oscillations can cause flame extinction, reduce engine life and/or cause catastrophic 

structural damage under extreme circumstances. Only to the extent that such oscillations 

can be controlled and lean mixtures can be burned stably, can emissions be further 

reduced to meet future standards [1]. 

Combustion Instabilities 

 Combustion instabilities arise at different stages of the combustion process and 

could be grouped into various types [2]. Intrinsic instabilities are inherent to the 

combustion and fluid physics. Chamber instabilities result from the interaction of the 

combustion process with a combustion chamber. System instabilities involve the 

interaction of the combustion processes in a chamber with upstream feed lines and/or 

downstream exhaust. In each of these three categories, different physical processes may 

contribute to the instability. Another categorization of instabilities is in terms of the 

physical processes involved. For example, there are buoyant instabilities, hydrodynamic 

instabilities, and acoustic instabilities, among others. The focus of this research is on 

oscillatory types of combustion instabilities that are acoustic chamber instabilities, 
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sometimes with feed-line coupling and with influence of hydrodynamic and intrinsic 

instability. 

Characteristics of Oscillatory Instabilities 

 The oscillatory instability in gas-turbine combustors arises from the coupling of 

unsteady heat release with acoustic waves in a chamber, resulting in repeated pressure 

fluctuations at various characteristic frequencies. The instability frequencies are 

associated with the geometry of the device and may be influenced by interactions 

between the device and the flow field. The interactions causing these self-excited 

oscillations are complex because of the coupling of the flow field with the unsteady (and 

highly nonlinear) heat release. Some experiments have been interpreted [3 ,4] to indicate 

that a primary cause for generation of instabilities is an acoustic wave generated by 

unsteady heat release that trips a Kelvin-Helmholtz instability in the flow [5], where high 

density gradients, shear, and substantial vorticity exist. The instability modifies both the 

overall flame structure and the flow (turbulence), and hence an effective closed-loop 

feedback system is generated.   

 In 1878 Rayleigh proposed a criterion that has evolved into a clear rule for the 

potential amplification of an acoustic wave in a combustion system, essentially that 

positive correlation of the heat-release and pressure variations over the period of one 

acoustic cycle results in amplification of oscillations [6],  

0)(')('
T

0

>∫ dttqtp , (1) 

where '  and  are the pressure and the heat-release perturbations, respectively, as a 

function of time t, and T denotes the period of the oscillation. Unfortunately, it is difficult 

to apply this criteria in a practical setting, as may be observed in studies [7-9] of one-
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dimensional systems designed to model reheat buzz. For linear oscillatory instability 

studies, the perturbations of concern can be represented as harmonic oscillations, the real 

(Re) part of complex functions, 

}Re{' )( αω −= tiPep      and         , }Re{' )( βω −= tiQeq (2) 

where P and Q are amplitudes of the pressure and heat-release perturbations, 

respectively, and ω  is the frequency. In terms of α andβ , the phase angles of the 

pressure and heat-release perturbations, respectively, it can be shown that equation (1) is 

satisfied if the phase difference between the two perturbations, βαδ −= , lies between 0 

andπ .  

To gain further understanding of the oscillatory instability from first principles, an 

equation for the acoustic energy may be derived from fundamental fluid mechanics. 

Starting from the continuity, momentum and energy relations, and considering only linear 

perturbations, with the brackets denoting an average over the cycle, this equation takes 

the form 
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where ',',',' pu τρ  and q' are the perturbations for the velocity, density, viscous stress, 

pressure and heat-release rate respectively. Here dS and dV are the differential surface-

area and volume elements respectively, ρ is the average density, and c is the average 

speed of sound, given by: 

θγRc = , (4) 
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where R,γ andθ are the ratio of specific heats, the gas constant and the temperature, 

respectively. For simplicity of notation, tensor contractions are not shown in equation (3), 

terms being written in the form they would take in a one-dimensional system. 

It is worth noting that: 

- The first term represents the rate of change in the acoustic energy in the 

combustor volume. 

- The second term is a convection term for energy moving in and out of the 

control volume through the surface S. 

- The third term arises from the coupling between the pressure and heat 

perturbations (essentially the Rayleigh criteria). 

- The fourth term represents the viscous dissipation of the acoustic energy. 

The thermodynamic interpretation of the Rayleigh criteria may also be illustrated 

in terms of the mechanical work done over the period of one cycle by the acoustic energy 

[10], 

∫ ∫ ∫ ∫ ∫+=+−=
T Tq

q dtqpdt
dt

dpdpdpp
p

dp
0 0
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)( ''~''0'''''' υυ

γ
υυ , (5) 

where p' andυ ' are the perturbations in pressure and specific volume, respectively.  This 

work term is split into an isentropic portion, the integral of which vanishes, and a portion, 

( ), resulting from the volume change caused by the heat addition. Depending on the 

sign of the integral, mechanical work could be added to or extracted from the cycle. 

)(qυ

Amplification of Oscillatory Combustion Instability 

 Several mechanisms have been identified that contribute to acoustic instability 

amplification, some of which are: 
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Air/fuel-ratio fluctuations: Recently investigated by Lieuwen and Cho [11], the 

heat- release perturbations at the flame can cause acoustic waves to propagate upstream 

into the feed lines and cause perturbations in the incoming air/fuel mixture. These 

perturbations may be carried by the mean flow and trigger a fluctuation at the base of the 

flame, closing the instability loop. Several studies have addressed this possible 

mechanism. For example, Sacarini et al.[12] studied the fuel-air fluctuations in a simple 

duct and concluded that the strong potential of these fluctuations to drive instabilities 

justified substantial effort in mitigating air/fuel fluctuations. In their work [13], they 

defined a parameterσ as an indicator of the efficiency of the mixing duct,  

u
u '

'
φ
φ

σ = , (6) 

where
φ
φ '  is the ratio of air/fuel-ratio perturbations to the mean air/fuel-ratio, and

u
u' is the 

ratio of velocity perturbations to the mean flow velocity.  

Their later work focused on trying to get this parameter as close to zero as 

possible [13], which was accomplished by improving the mixing quality of the reactants 

by using multiple fuel-injection locations.  

Convective-Acoustic Waves: This is a class of perturbations that are carried by 

the mean flow, such as vortices shed from the flame holder and/or entropy waves 

propagating downstream, and generating upstream-propagating acoustic waves. The 

vortex shedding and entropy phenomena are as follows: 

  Vortex Shedding:  Vortices shed from the flame holder were suggested as 

a cause of combustion instabilities as early as 1956 by Rogers and Marble [14]. More 
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recently, experimental investigation by Poinsot et al. [3] looked at this as a possible 

source of combustion instability. The instability is triggered when the vortices shed at the 

flame holder entrain unburned mixture, which propagate downstream and causes a 

sudden heat release at some point downstream. This triggers an acoustic wave 

propagating upstream, closing the feedback loop. Culick and Magiawalla [15] 

investigated vortices shed from the flame holder consisting of pure products, which 

would impinge on obstacles downstream (e.g. the nozzle) and cause pressure oscillations 

to intensify. This investigation was of purely acoustic phenomenon with no heat-release 

contribution.  Mateev and Culick [16] recently investigated the formation of vortices 

behind flame holders and their interaction with flow-field perturbations in premixed 

combustors, using a newly developed quasi-steady model. In this model, they addressed a 

dump combustor in which they assumed constant fluid properties, vortex burning as the 

only source for instability (without vortex-surface interaction), and vortex propagation at 

the mean flow velocity. They were able to partially validate the model against 

experimental results for vortex shedding in a non-reacting oscillating cold flow. The 

authors cited a concern that reacting flows might behave differently and that resulting 

vortex shedding and interaction in reacting flows might follow a different pattern [16]. 

  Entropy waves: The phenomenon of localized hot spots in a mean gas 

flow has been known for a number of years. When these hot spots reach the inlet of a 

chocked nozzle, their arrival triggers an upstream acoustic wave propagation that can 

cause an acoustic instability. The effect of entropy waves on flow-field instabilities was 

suggested in early work by Chu [17], who considered their influence on combustion 

instabilities to be minimal except at low frequencies. Polifke et al. [18] recently studied 
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the constructive or destructive coupling of entropy waves with the pressure perturbations. 

Since the hot spots are transported by the mean flow (usually at low velocity), effects of 

entropy waves have been assumed to exist at low frequencies [19]. 

 There are other possible sources of combustion oscillatory instability ranging 

from purely chemical-kinetic to solely fluid-mechanical. Their contributions vary with 

oscillation modes. It is also possible that some of the oscillation modes are triggered by a 

combination of perturbations (velocity, temperature, laminar flame speed, etc...).  

Damping of Oscillatory Combustion Instability 

Little work has been done to include damping effects in the body of literature on 

combustion instabilities. Most of the previous research has looked at amplification 

mechanisms and signs of growth or decay of the modes. The few studies looking into 

damping were independent from research into amplification or were complete engine 

studies [20]. 

 Williams [2] presented some of the possible damping sources in an oscillating 

combustor environment. 

 Wall damping: Wall damping of the velocity parallel to the wall occurs as a 

result of the oscillating boundary layer with a thickness of order 

ωρ
µ

δ
w

w= , (7) 

 where wµ  is the viscosity near wall. Hereω and wρ  are the oscillatory frequency and the 

density near the wall, respectively. The wall damping depends on gas molecular 

properties near the wall and on the surface area of the combustor liner and wall.  This 
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energy damping can be found, starting from a simplified time-dependent momentum 

equation [2], 
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(8) 

where ww µρ ,  and ν are the density, viscosity and velocity values near the wall. This 

equation has a solution,  
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where Vcw ,,θθ and,ω are the temperature at the wall, the temperature at the core, the 

oscillatory velocity magnitude outside the oscillating boundary layer, and the frequency 

of the oscillation respectively.  

 From this velocity solution, an energy dissipation expression, (per unit area of 

combustor wall), was formulated by Williams [2] as,  
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This solution then needs to be integrated over the wall boundary surfaces to obtain the 

total rate of dissipation by the wall damping. 

 Particle damping: This is the sound attenuation by the Stokes drag on small 

particles (mainly soot in the combustion applications of interest here). Williams [2] 

identified the range of contributing particle sizes by 

λ
ρω
µ

<<<<sr , (11) 
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where ωρµ ,,,sr ,andλ are the mean particle radius, viscosity in the chamber, density, 

frequency, and the acoustic wave length. The contribution of the particle damping 

depends on the velocity difference between particles and gas, particle sizes, particle 

density, number of particles per unit volume and particles distribution. 

 The total rate of acoustic energy dissipated by solid, spherical particles in the flow 

can be calculated as 

( )∫ ⋅−
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V
gsgssspd dVvvvrne ρπ
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3

3
41

2
1 , (12) 

where gsss vrn ,,, ρ ,and are the number of particles, particle radius, particle density, 

gas velocity and particle velocity, and the brackets represent an average over time. The 

response time,

sv

τ , is calculated from 

( )µ
ρ

τ
9

2 2
ssr

= , (13) 

where µ is the gas viscosity. 

  Equating the force decelerating a particle with the Stokes drag and performing a 

few algebraic operations reduces the coefficient of energy dissipation to 
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where represents the number of particles per unit volume within radius 

range about . 

ss drrG )(

s srdr

The total energy dissipated can be calculated from 

( )tee pdopd α−= exp  (15) 

where e is the initial acoustic energy. o
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 Relaxation damping: This is a form of homogeneous dissipation that is caused 

by chemical and vibration relaxation. The contribution of relaxation damping depends on 

the frequency of the oscillations, the chemical relaxation time, which is a measure of the 

reaction rate, and the speed-of-sound ratio,
e

f

a
a

, where and  are the frozen and 

equilibrium sound speeds respectively. Relaxation damping is usually small compared 

with wall damping, but might become important for large chambers. 

fa ea

 Homogeneous damping: This is damping of the acoustic energy caused by 

viscous dissipation. It primarily depends on velocity gradients, acoustic frequency, and 

viscous properties. It is believed to have small contribution to acoustic energy attenuation 

at low frequencies, but this contribution increases as frequencies increase, and it is a 

possible cause for the absence of very high-frequencies. 

Nozzle damping: When choked flow conditions are met, the propagation of 

acoustic waves is restricted at the nozzle and no propagation of longitudinal waves is 

allowed upstream from a diverging supersonic-flow section. This boundary can absorb 

energy depending on the flow conditions. 

There are other damping sources to be considered in an actual combustor, such as 

perforated walls and cooling flows near the wall, and heat-addition mechanisms acting 

out of phase with the pressure perturbations. 

Review of Prior Methods to Study Oscillatory Instability 

 There is a large body of literature in the area of combustion instabilities. Before 

instabilities were recognized as problems in the gas-turbine industry, combustion 

instability was observed as a serious issue during the development of solid rockets, and 

later also became pronounced for liquid rockets, where much of the earlier research was 
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conducted [21]. The complicated nature of the coupling between the heat release and 

acoustics continues to make control of instabilities a challenging task for researchers 

looking into investigating and designing propulsion and power-generation devices. 

 Figure 2 summarizes some of the methods used to analyze and/or predict the 

onset of combustion instabilities. All approaches to study combustion oscillations start 

from the Navier-Stokes conservation equations, and may be classified as follows: 

 • An approach in which the linearized Rankine-Hugoniot equations are expanded 

around a small Mach number to relate the perturbations across a flame front. The use of 

network models and the flame jump relations produces a dispersion equation to be solved 

for the eigenfrequencies of interest. 

 • Another approach by which simplifying the linearized (N-S) equations produces 

an inhomogeneous wave equation for pressure perturbations with a source term 

accounting for combustion heat release. The challenge in this approach becomes finding 

approximate solutions that satisfy the boundary conditions. The method of weighted 

residuals and its variants are used to solve the resulting equation. 

  • A recent approach to numerically integrate the Navier-Stokes equations directly 

as done by many computational fluid dynamics (CFD) simulations. 

 The first two approximate methods require a closure term for the heat release 

term. Closure formulas range from general closure terms relating velocity or pressure 

perturbations to heat release, to detailed flame models. These will be discussed later. The 

analysis then either takes the path of finding a dispersion relation for the frequency, via 

the Rankine-Hugoniot equations, or finding approximate solutions to the inhomogeneous 

partial differential equations (PDEs) using the Galerkin method. CFD simulations require 
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large computational efforts if they are direct simulations, or need approximations for 

small turbulent scales as in large-eddy simulations. Examples from these approaches are 

discussed in more detail below.  
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Figure 1: Summary of methods used to study combustion oscillatory instabilities 

 
The (n-τ ) Approach  

 Also referred to as the time-lag model, the n-τ  approach evolved during research 

into liquid rocket instabilities by Crocco, Cheng and others [21]. The model provides a 

way to couple heat perturbations with flow-field perturbations. This is achieved by a 

pressure-interaction index, n, describing how the pressure oscillations affect combustion 

oscillations, and a time lag τ  between the two fluctuations. The time lag is defined as the 

interval between the time when the pressure disturbance occurs at the flame to the time 
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when heat is released in that location [6]. Crocco [21] assumed that the heat release is 

only affected by the pressure and is proportional to , where n is the interaction index. 

These models have been used for linear and nonlinear perturbations alike [18,22] and are 

generally formulated to look like some variation of the expression,  

np

3
+

p
peQnQ i ')1(' ωτ−= , (16) 

where '  is the perturbation of the heat release, '  is the pressure perturbation, andQ p Q  

and p are the mean heat release rate and pressure respectively. The n-τ model in its 

original form is open to using empirical correlations between the heat and the pressure 

perturbation and in general should be viewed as a framework that may include both 

physical concepts and empirical observations. 

 Putnam provided a simple way of estimating the time lag for combustion 

instabilities such as those of interest here [6], 

pV
δτ = , (17) 

whereδ  is the distance between the fuel injector to the flame front and V is the mean 

fuel velocity. This τ in essence is a mean convection time between the fuel port and the 

flame front. He later [6]modified the formula to account for an additional time lag based 

on observations from experimental results. The modified time-lag expression is  
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where is the duct diameter and  is the laminar flame velocity. The additional time is 

intended to account of the transverse flame propagation across the diameter. There are 

various ways of interpreting the time lag. For example: 

a LS

- The time lag appropriate for the liquid rocket applications often is thought to be 

associated with droplet evaporation and the consequent heat release, dependent on 

reaction rate. These processes are directly affected by the pressure, and hence 

Crocco determined that τ  varies with only. np

- For the premixed combustion application considered here, the frequencies of 

concern are lower, and the time lag is more closely associated with the interval 

from the injection of reactants to their arrival at the flame front (convection time). 

This is closer to the expressions proposed by Putnam [6] in equations (17) and 

(18), which many of the studies on premixed combustor oscillations have 

adopted. 

An Approach Employing the Rankine-Hugoniot Relations  

Keller [23] and later Polifke [18] derived a set of algebraic correlations by 

expanding the Rankine-Hugoniot equations around the mean Mach number. The 

Rankine-Hugoniot relations are 

22
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          , (19) 

where hpu ,,,ρ , and q are the density, velocity, pressure, enthalpy and heat addition 

respectively. The subscripts c and h represent the region prior to the flame (reactants/cold 

side) and the region after the flame (products/hot side).  Keeping only the linear terms, 

 16



 
 

they derived a relation between flow perturbations on both side of the flame, taken here 

to be a discontinuity with a temperature jump, 
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where ρθ ,,',' pu , and U are the velocity perturbations, pressure perturbations, mean 

temperature, mean density and mean velocity, respectively.  

Closure for the 
Q
Q'  term: To provide closure for the resulting algebraic 

equations, the term
Q
Q' , representing the ratio of heat-release perturbations to mean heat 

release, was written in terms of pressure and/or velocity perturbations with a time lagτ . 

An example is the closure term for vortex shedding [18],  

ωτε ie
Q
Q

=
' , (21) 

where ε  is interpreted as the percentage of reacting mixture entrained by the vortex. The 

model assumesτ  to be a constant, which is a common assumption in the literature, along 

with the approximation that the interaction index n is constant. These approximations 

may not always be accurate, especially when there is significant flame movement, which 

would lead to a time varyingτ , or different operating conditions, which would lead to a 

changing n. 

An alternative to seeking an overall closure model for the heat-perturbation 

term
Q
Q'  is to consider a flame model that incorporates some of the nonlinear effects 
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involving the flame location, shape, area and response to flow-field perturbations. The 

flame model would affect the rate of heat release, since the total heat release can be 

related to the flame area by the expression 

flameLcchp ASCQ ρθθ )( −= , (22) 

whereC  ,p Lc S,ρ , and are the specific heat at constant pressure, density,  laminar 

flame speed,  and flame area respectively. In this thin-flame model, the resulting acoustic 

perturbations can be represented in terms of flame-area perturbations [24]. 

flameA

Efforts have been made to break the heat-perturbation term Q  into several 

contributing components in other ways such as[11,25],   

flameLr ASHtotal QQQQ
....

++= ∆  (23) 

where  is the perturbation resulting from heat-release fluctuations, Q is the 

perturbation caused by variation of the laminar flame speed and Q represents 

fluctuations caused by instantaneous flame-area perturbations. These studies have 

assumed the flame to be a discontinuity separating reactants from products. In the work 

of Lieuwen [11], this flame front was tracked using a flame-tracking equation. Transfer 

functions were assigned to each term and contributions from these transfer functions were 

then incorporated into the combustion instability model. It was indicated that although 

the transfer functions were adequate approximations for the regime of small Strouhal 

number , at larger Strouhal numbers there were reported differences between 

experiment and theory [11]. In these studies, the Strouhal number is defined as  

rHQ∆
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where ω is the frequency, R is the radius of the combustor inlet, 0LS  is the mean laminar 

flame speed at a reference point (e.g. center point). 

Stability Studies: In studying the stability of combustion systems, the pressure 

and velocity perturbations were taken to behave in a harmonic manner, similar to 

equation (2). Polifke et al. [26] constructed a network model for a simplified combustion 

system, in which each component of the system was represented by an acoustic 

impedance. Assuming negligible contribution from the mean flow (low Mach number 

approximation), and starting from a fuel plenum with boundary conditions set to zero (no 

flow perturbations), the one-dimensional coupled system of equations developed in this 

process accounted for pressure losses and velocity changes caused by duct friction and 

area changes up to the flame location. Jump conditions were introduced at the flame 

location as the flame was assumed to be a discontinuity of negligible thickness resulting 

in an instantaneous temperature jump. The combustor zone after the flame was 

approximated by a constant-area duct and a choked flow conditions were taken at the 

combustor exit, Mach number equal to unity, representing maximum mass flow and 

permitting no flow perturbations to propagate upstream from the turbine. A small 

harmonic perturbation was then numerically introduced at the plenum exit. The coupled 

system of equations was manipulated to derive a dispersion equation in the frequencyω . 

The roots of the equation are the complex eigenfrequencies [18,27].  

A stability criterion was determined by looking at the cycle increment, defined 

[18] as the percentage by which an infinitesimal amplitude may grow in one cycle, 
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Here )(ωCI , the cycle increment for a particular frequency, is an exponential function of 

the ratio of the imaginary to real part of the eigenfrequency and is a measure of the 

growth rate of the amplitude, and negative values of )(ωCI indicate decay.  

As the system of equations grows larger, (adding more mechanisms or including 

more ducting upstream or down stream from the flame), finding all the eigenfrequencies 

of the dispersion relation becomes a harder numerical task. Also, the dispersion relations 

obtained by the above studies do not provide concrete information about frequencies 

other than the eigenfrequencies, and whether they will grow or damp. As operating 

conditions of the combustor change and the energy distribution shifts between modes, 

some of these undetermined eigenfrequencies may be susceptible to growth as well. 

An alternative to seeking eigenfrequencies and dispersion relations is the 

approach of inserting a closure term for the heat-release perturbations term in equations 

(20). For example, putting ωτε ie
Q
Q

=
'  with, 05.0=ε  (5% of the reacting mixture is 

entrained by the vortex), enables pressure and velocity perturbations’ amplitudes to be 

calculated. Inspection of the resulting pressure-perturbation amplitude in time (growth or 

decay) provides a way of inferring growth or decay information from the time history of 

the perturbation [18]. 

 In this method the choice of the value of ε is empirical, and it is viewed as the 

only nonlinear addition to the linearized equations. It then becomes the driving source for 

possible amplification. This makes predicting instability using this method wholly 
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dependent on the choice of the driving term, presumed to arise from nonlinear 

phenomena in a formulation which nonetheless is linear. 

Use of Green’s Functions  

An intermediate level of analysis, between the linearized Rankine-Hugoniot 

equations and a full time-accurate CFD simulation, is the use of approximate methods to 

solve the inhomogeneous PDE. These approximate solutions attempt to capture more of 

the physics than simple closure approaches can capture. Starting from the linearized 

Navier-Stokes conservation equations and ignoring the mean flow (Mach number very 

small so it can be approximated as being equal to zero), Hegde et al. [28] formulated the 

problem in the form of an inhomogeneous wave equation for the pressure perturbation,  

t
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2

γ
ρ

ρ . (26) 

To solve the problem, a Green’s function was used to represent the heat 

perturbation term in equation (26). Overall, their use of this method provided some 

insight but fell short of yielding a conclusive answer because of their omission of a 

formal coupling between the heat release and flow-field perturbations [9]. 

In the case of a formal coupling between the pressure perturbations and the heat 

perturbations, the use of a Green’s function essentially simplifies the inhomogeneous 

PDE into an integral equation to be solved iteratively.  

Approaches making use of a Galerkin Expansion 

 The approach is a variation of the method of weighted residuals developed for 

solving PDEs. Powell and Zinn [29] applied a linearized Galerkin technique in their 

investigation of axial and transverse instabilities in liquid rocket motors. A similar 
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approach was independently developed and used to analyze solid rockets instabilities by 

Culick [30].   

Again the approach is from the inhomogeneous wave equation for the pressure 

perturbations p', 

h
t
pp =

∂
∂

−∇ 2

2
2 '' , (27) 

where the source term h is the contribution of the heat perturbations to the pressure 

perturbations. Using the notation of Culick [31] this term can be written as, 
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The boundary condition is  

fpn −=∇⋅ ' , (29) 

In which  is zero for rigid-wall boundary conditions, and f is the effect of the heat 

addition. 

'pn ∇⋅

 The solution for equation (27) was approximated by a series expansion in the 

natural modes of the combustion chamber, which are the solutions of the wave equation 

with no heat perturbation and rigid-wall boundaries. The solution was given the form: 

( ) ∑= m mm rttrp )()(,' ψη , (30) 

where )(tmη  are the amplitudes of the pressure perturbations and mψ are the acoustic 

eigenfunctions; these are the geometric natural modes with no flow or heat addition. 

Given the mode shape, the use of the Galerkin method tracks in time whether the 

amplitude of each mode m )(tmη will grow or decay. 
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 The Galerkin methodology has been used to look at various longitudinal and 

transverse modes and has been used for both linear and nonlinear analyses. It has been 

observed that different modes may or may not grow depending on the number of 

expansion terms included in the Galerkin approximation [32]. Inclusion of more modal 

terms from the expansion results in more effort and eventually to a larger nonlinear 

system of ordinary differential equations. Finally, detailed knowledge of the mode shapes 

and therefore of the combustor geometry is needed to be able to proceed with this type of 

analysis. 

Unsteady Computational Fluid Dynamics Simulation (CFD)                          

            Direct modeling of combustion processes in general requires extensive 

computational resources. In addition to solving for the flow field and chemistry, an 

inherently stiff system of equations, direct solution requires solving for the transport 

properties of N species produced or consumed during the reaction processes. Unsteady 

CFD, though far superior to previous approximate methods in capturing details of the 

flow field, requires extensive time and computational resources to model the complex 

flow field of multi species, dimension, and time represented in evolving Navier-Stokes 

equations.  

 Instead of computing fine-scale fluid details directly with direct numerical 

simulation (DNS), the practice has been to limit calculations to large fluid structures, thus 

reducing the computational requirements. A separate, simple model represents the fine 

structures and quantifies only their contribution to the flow field. This treatment, referred 

to as large-eddy simulation (LES), utilizes a subgrid model to indirectly account for the 
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fine-scale turbulent structures, which are assumed to be homogeneous and possess a 

universal character.  

 Hsiao et al. [33] studied the instabilities in a 3-D model of an annular combustor 

using LES. He later used CFD modeling results to incorporate into a low order acoustic 

model for predicting oscillatory instabilities. Stone and Menon [34] studied the effect of 

swirl on the stability of premixed combustors, again employing LES, they effectively 

captured the contribution of large structures to mass, momentum, and energy “vortex 

structures,” while empirical and or analytic formulas were used for the smaller turbulent 

structures. Comparisons for various fuel/air ratios showed their effect on imperfect 

mixing and the result on the combustor instability. 

 Steele et al. [1] used an LES code to run time-accurate simulations of a model 

combustor with the approximate dimensions of one of the Solar Turbines Mars 

combustor family. They predicted a range of instabilities that later were compared 

relatively well with experimental results. They also used an (n-τ) model to look at the 

stability characteristics of that particular combustor. This effort, using results from CFD 

along with a low-order model, resulted in what some in the industry term the (τ -F) 

criteria, which is essentially a convective time lag multiplied by the frequency of interest. 

The work enabled them to identify some of the stable/unstable operating regimes for gas 

turbine engines and served as a quick design guideline to avoiding zones of instability, 

but never explained why instabilities would or would not occur. 

 To date much of the unsteady CFD literature has focused on simple geometries. In 

many cases results from steady CFD have been used to compliment low order models.  
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Summary of Reviewed Studies 

Much of the analysis in the literature has assumed the wave behaves as a one-

dimensional acoustic wave. Very little analysis has been done on multi-dimensional 

acoustic wave propagations and the effects of reflecting and or refracting waves. Lieuwen 

[35] investigated the acoustic field in the near field of a flame using 2-D flame zone 

geometry and a boundary element method code. He found that while the pressure field 

remained almost one-dimensional with very small departures, the velocity field behaved 

weakly 2-dimensionally at the center of the flame (variation from the 1-D wave 

approximation increasing slightly with the frequency) returning monotonically to the one-

dimensional behavior closer to the wall.  

 The previous numerical and experimental research has focused on simple 

geometries such as straight ducts or constant area combustors, and in some cases has used 

network models, a method by which a complex geometry is broken into a series of 

different size ducts to compensate for different diameters and area changes [18,27]. This 

has allowed the simplification of the task of calculating the natural modes and convection 

times appropriate to the geometry. 

  Neglecting the mean flow is a common simplification of the problem adopted by 

all of the approximate methods.  Mean flow contribution comes in two types, a velocity 

contribution to the acoustic wave and additional waves such as vortex shedding and 

entropy waves [9]. Dowling [36] studied the impact of the mean flow on combustion 

oscillations and concluded that mean flow effects are negligible for Mach numbers less 

than 0.2 (many practical combustors), while for higher Mach number flows, the presence 

of the mean flow adds the possibility of new mode oscillations.   
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Motivation for a New Approach 

 Previous research efforts have attempted to either identify the growth or decay of 

a particular mode, generally the natural modes of the geometry as in the Galerkin 

approach, or have attempted to identify the modes that will grow or decay by solving a 

dispersion relation, as in the time lag approaches. The susceptibility of particular modes 

to growth or decay depends on the selection of amplification and/or damping mechanisms 

included in the governing equations.  

 The authors couldn’t find much prior work approaching the instability issue with 

a direct acoustic energy conservation approach. This approach allows the flexibility to 

calculate contributions from amplification and/or attenuation across all frequencies, 

rather than predicting eigenmodes. It is our belief that a direct acoustic energy approach 

could be of tremendous benefit in determining the susceptibility of all frequencies to 

growth or decay as operating conditions in a gas turbine change. This approach may also 

give designers a better handle on improving passive damping in the initial design phase, 

as they would have the ability to scan various frequencies and investigate their 

susceptibility to oscillatory instability at different operating conditions. We expect that 

this effort will provide a new prospective on and enhanced prediction of combustion 

oscillatory instabilities. 
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Investigation Through Acoustic Energy Conservation Equation 

It is clear from previous research that the occurrence of an oscillatory instability 

in a combustor follows a series of events resulting in a rapid increase in the acoustic 

energy content inside the control volume. Therefore, the goal in this modeling effort is a 

careful accounting of the sources and sinks for acoustic energy, to identify conditions of 

instability. 

The analysis begins with the unsteady Navier-Stokes equations. Following the 

derivation by Williams [2], the linearized perturbation equations render an expression for 

the instantaneous acoustic energy in the form: 

2
'

2
' 22 v

P
pe ρ
γ
+= . (31) 

Consequently, the conservation of the acoustic energy in a combustion chamber can be 

written as: 

0)()'.( =Φ+∇+><+
∂
∂ eVvPV

t
e ρ , (32) 

whereΦ  is a source term for amplification/damping to the acoustic energy [2]. 

Employing the divergence theorem, the above expression can be written as follows: 

∫∫ ∫∫∫∫∫∫∫∫ +−−=
A VAV

dVndAvendAvPpdVe
dt
d φ.'.' , (33) 

where in this equation the first term on right side is the contribution by the boundary 

work, the second is the acoustic energy convected by the mean flow, and the third term is 

the combined amplification/damping effects from different mechanisms that contribute to 

combustion oscillations. 
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Linear Analysis 

The mechanisms attributing to amplification and damping of acoustic energy are 

to be assessed independently to find their amplification coefficientα , a reciprocal time 

(or a rate), which can be computed as follows: 















 Φ+−−
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2

.'.'
α , (34) 

where  

∫=
V

edV
V

e 1 , (35) 

is the average acoustic energy per cycle in the combustor volume. 

 The acoustic energy at any time can be calculated from the expression 

t
oee α= . (36) 

In the linear analysis 

∑ ∑−= dampamp ααα , (37) 

enables the inclusion of all contributing factors to an oscillation event in a simple 

algebraic manner. 

Stability for each frequency stability criteria can be assessed by looking at: 

∑
∑=

.damp

amp
sfS

α
α

, (38) 

where indicates that amplification overcomes damping and that an oscillation 

could occur at the conditions and frequency examined.  

1>sfS
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We believe that the linear analysis tool proposed here would be useful at the 

initial design phase, allowing for rapid analysis of various designs before moving onto a 

complex nonlinear study, and/or a costly CFD simulation of the problem.  By 

independently evaluating the effects of amplification and driving mechanisms, a linear 

analysis tool can also be useful for understanding likely root causes and potential 

solutions for operational problems. 

 

Attach: Progress presentation made at Solar Turbines, April, 5th, 2005 
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