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ABSTRACT OF THE THESIS 
 

 
Time dependant Thermo-mechanical Modeling including Phase Changes in Direct 

Drive Inertial Fusion Energy Targets 

 

by 

Kurt-Julian Boehm 

Master of Science in Engineering Sciences (Mechanical Engineering) 

 

University of California, San Diego, 2006 

A. Rene Raffray, Chair 

 

A two dimensional bubble nucleation mode was added to the previously presented 

thermo-mechanical model used to define the design margin for direct drive (DD) 

inertial fusion energy (IFE) targets. Tested on analytical solutions, the new model 

successfully simulates heating experiments on DT targets conducted at LANL. The 

3He present in the DT due to the tritium decay gets trapped in lattice sites evolving 

into nuclei big enough to serve as nucleation sites for heterogeneous bubble 

nucleation. Depending on the size of these nuclei, a certain liquid superheat 

temperature is required to nucleate bubbles. The liquid superheat temperature 

further increases as the pressure within the target induced by the plastic shell rises.  

The previous requirement for target survival was for the temperature of the DT to 

remain below triple point of DT (19.79K). If the existence of a melt layer does not 



xv 

violate the symmetry requirements on the target for successful implosion, while 

the existence of a bubble does, the previous restriction can be lifted allowing for a 

melt layer to grow as long as the occurrence of bubble nucleation can be avoided. 

This study shows that melting and bubble nucleation can be timely separated. 

Depending on the 3He nucleus size, the pressure in the target and the initial 

temperature of the target, the maximum allowable heat flux for a given survival 

time can be increased, allowing a less restricted design margin for the chamber 

design.   

 



1 

1. Introduction 

 Where do we stand? 

 This study extends the research work on direct-drive (DD) inertial fusion 

energy (IFE) target survival started at UCSD with the work of Brian Christiansen 

under supervision of Dr. Rene Raffray [1], [2], and [3]. The key basis of this research 

is the strict symmetry requirements imposed by target physics for compression and 

ignition of the DT fuel pellets using multiple laser beams. Wall radiation and energy 

exchange from the chamber gas can significantly impact these symmetry requirements 

in particular if phase change occurs. The phase change behavior of DT targets is quite 

complex (e.g. the presence of 3He from tritium decay can influence the onset of 

nucleation) and needs to be better characterized through a combination of numerical 

modeling and experimental work.   

The main focus of the present work is the expansion of the previous one-

dimensional thermo-mechanical model into a 2-D version in order to more accurately 

simulate bubble nucleation and growth, and predict its effects. A more detailed 

estimate of the impact of phase change (solid to liquid and also nucleation) on the 

target symmetry would provide a better basis to determine whether the previously 

applied conservative restriction of maintaining the temperature of the target below the 

DT triple point (19.79 K) could be relaxed while still satisfying the target physics 

requirements. Allowing a higher outside temperature in the DT would justify the 

assumption of the target to be able to accommodate higher heat fluxes, and to be more 
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thermally robust to changes in the chamber environment during injection. In parallel to 

the numerical simulation of bubble growth, the heat loads on the target need also to be 

characterized for different chamber designs. Further, the effects of the tritium decay 

into 3He need to be assessed, as it is suspected that the 3He nuclei might enhance DT 

bubble formation in the first place.  

Since the behavior of cryogenic DT under heat loading has generally been 

unexplored in the past, it is important that numerical modeling of phase changes as 

well as thermal and mechanical responses of the target is compared to experimental 

results to establish accuracy and reliability of the model. The present work includes a 

comparison of numerical results to analytical solutions for controlled cases first, 

followed by a comparison of numerical results to experimental results from Los 

Alamos National Laboratory (LANL) on DT heating. These experiments use 

cylindrical targets: so, the simulation code was first written in cylindrical coordinates, 

and then transformed to spherical coordinates to model IFE targets during injection in 

a chamber.   

 With this work, we intend to better define the design range for IFE targets and 

give guidelines as to what pellet design will be required depending on the injection 

velocity, background gas pressure and wall temperature.  
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2. Thermal Loading 
 

In this section the heat load on the target during injection in the chamber is 

calculated for different scenarios and conditions associated with various chamber 

designs. Before the effects of the heat flux can be modeled, its magnitude has to be 

found. As recommended by Christiansen, DS2V, a commercial Monte Carlo gas flow 

simulation code [4], is used to estimate the energy exchange due to the interaction of 

the target with the chamber gas [1]. Previous results tended to focus on relatively high 

chamber gas densities (e.g. corresponding to ~50 mtorr at a ST=300K) required for 

wall protection in compact chambers (~6 m in radius). Recently, the HAPL program 

has been looking at the possibility of avoiding the use of a protective chamber gas by 

considering larger chambers (~10-11 m in radius). The absence of a protective gas 

relaxes the constraints from target heating and placement, and avoids any potential 

impact on laser propagation. The chamber environment during injection would then 

consist of the target burn remnants consisting mostly of He, D and T. The density of 

these chamber constituents during injection would depend on the vacuum pumping 

performance, but is estimated as less than ~1-10 mtorr at ST . Table 2.1 summarizes 

the results for an upper bound density case of 10 mtorr at ST (corresponding to a 

number density of 3.24x1020 m-3) for various constituent gases at temperatures of 

1000K and 4000K, respectively, and for injection velocities of 100 m/s and 400 m/s, 

respectively. Clearly, in the ranges relevant to IFE simulations, the raise in 

temperature from 1000 K to 4000 K has a higher effect on the heat flux than raising 

the injection velocity of the target from 100 m/s to 400 m/s. We can also see that a 
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heavier gas with larger molecules will create a smaller heat flux than a lighter gas with 

small molecules.  

The radiation heat transfer can be found by equation (2.1): 

 4)1( wrad Tq σµ−=′′    (2.1) 

This heat load would be very significant if the reflectivity of the target surface was 

low. Using the proposed Au-Pd layer, the reflectivity of the target can be increased to 

as much as 96%. (µ  = 0.96) [Appendix A] [1]. 
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Table 2.1: The heat load and the drag force are listed in this table for Helium 4, 
Tritium, Deuterium and Xenon at temperatures of 1000K and 4000K and a pressure of 
10 mTorr at ST. The small effect of the heat load when increasing the speed is shown  

by giving the heat flux at velocities of 100 m/s and at 400 m/s  

 
  

Heat Load Chart for Different Gases, Temperatures, and Target 
Speeds 

Gas Temp. Speed Head 
Load 

F - Drag Parameter 

100m/s 0.55 W/cm2 0.083 E-4 N 
1000K 

400m/s 0.75 W/cm2 0.35 E-4 N 

100m/s 4.3 W/cm2 0.18 E-4 N 
He 

4000K 
400m/s 5.0 W/cm2 0.66 E-4 N 

M= 4 g/mol 

m = 0.664 E-26Kg 

D= 1.86 E-10 

µ = 0.81 

100m/s 0.65 W/cm2 0.073 E-4 N 
1000K 

400m/s 0.80 W/cm2 0.30 E-4 N 

100m/s 4.9 W/cm2 0.16 E-4 N 
T 

4000K 
400m/s 5.4 W/cm2 0.59 E-4 N 

M= 3 g/mol 

m = 0.498 E-26Kg 

D= 1.86 E-10 

µ = 0.81 

100m/s 0.75 W/cm2 

0.058 E-4  

N 1000K 

400m/s 1.0 W/cm2 0.24 E-4  N 

100m/s 6.0 W/cm2 0.11 E-4  N 
4000K 

400m/s 6.5 W/cm2 0.48 E-4 N 

M= 2 g/mol 

m = 0.332 E-26 Kg 

D= 1.86 E-10 

µ = 0.81 

1000K 25m/s 0.75 W/cm2  

D 

4000K 25m/s 4.8 W/cm2  
 

100m/s 0.14 W/cm2 0.49 E-4 N 
1000K 

400m/s 0.6 W/cm2 2.3 E-4 N 

100m/s 0.9 W/cm2 0.97 E-4 N 
Xe 

4000K 
400m/s 2.0 W/cm2 4.01 E-4 N 

M= 131 g/mol 

m = 0.218 E-24 Kg 

D= 3.8 E-10 

µ = 0.81 
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The effects on the reflectivity due to cryogenic dust particles are discussed in 

Appendix A. The concern addressed in Appendix A derives from the high adsorptivity 

value of cryogenic gas (CO2 and H2O), which might accumulate on the target surface 

during handling and could lead to a lower reflectivity value of the target surface.  

 
Table 2.2: Different wall temperatures will impose different radiation heat fluxes onto 
the target. For the two limiting cases of 1000 and 1500 K wall temperature the 
respective heat flux due to radiation is given. Also, the effect of a reduced reflectivity 
of the target surface is illustrated. 
 

Reactor wall 
temperature 

Radiation heat flux µ  = 0.96 Radiation heat flux µ  = 0.92

1000 K 0.2 W/cm2 0.4 W/cm2 

1500 K 1.2 W/cm2 2.4 W/cm2 

 

The heat fluxes from both radiative and convective effects must be added to 

determine the total heat flux on the target.  

The absence of a protective gas might enable the target placement requirements to 

be met with lower injection velocities, thus allowing for simpler mechanical injection 

systems [5]. In support of this, a parametric study was done to determine the minimum 

injection velocity required for the DT to stay below the triple point temperature (19.79 

K) for different conditions. The results are described in Appendix B and the key 

findings summarized below.  

Using a chamber pressure of 1 mTorr at ST and a wall temperature of 1000K two 

limiting cases (background gas temperature of 1000K and 4000K) were investigated to 

correlate the injection velocity and the initial target temperature required for the target 

temperature to remain under DT triple point at the end of the flight through a 6.5m 
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radius chamber. For the lower heat flux case (1000 K background gas) it was found 

that the injection velocity can be reduced to below 50 m/s, while keeping the initial 

target temperature reasonably low (16K). Increasing the velocity to values higher than 

200 m/s shows little effect on the necessary initial temperature. In the higher heat flux 

case (4000 K background gas), initial temperatures below 12 K were computed 

necessary to reduce the injection velocity to 50m/s, which is a very significant 

reduction compared to the 17.5K required if the target flies at 400 m/s.  

Generally, a high temperature background gas will required fast injection speeds 

while lower background gas temperatures will allow for slower injection speeds. Since 

the injection velocity has only little influence on the heat flux, the background gas 

temperature is the most relevant parameter for the heat flux and such for target 

survival.  
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3. 3He - Bubble Formation 
 

 The effect of Helium in solids, especially in metals has been analyzed by many 

scientists in the past two decades. The present work focuses on the effect of the 3He, 

implanted by the Tritium decay, in heating experiments of DT and its relevance to IFE 

target survival. Observations at the Los Alamos National Laboratories [6] suggest a 

close relationship between the concentration of 3He in the fuel pellet and the 

appearance of bubbles during heating experiments. The present chapter explains the 

physics behind these observations.  

3.1 Tritium Decay 

Tritium decays into 3He following equation (3.1) with a half life of 12.3 years. As 

a result of this comparatively low half time, a considerable amount of 3He accumulates 

in the DT solid lattice within a few hours after layering the targets. 

 electronHeH +→ 2
3

1
3    (3.1) 

 For a power plant design it is estimated that a time of 4 – 10 hours will be 

required for target handling between layering and injection into the chamber [7]. 

During this time the decay of tritium inevitably causes two kinds of defects in the 

lattice: atomic displacement damage creating a vacancy and/or an interstitial atom, and 

the creation of a foreign element (3He) which has the tendency to precipitate into 

bubbles [8]. In the literature, these defects are researched mainly for 4He in different 

metals; the behavior of 3He in a DT lattice has not been analyzed.  
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Nevertheless we believe that the physics behind the diffusion mechanisms, the 

kinetics of bubble nucleation, the changes of mechanical properties and the atomic 

properties of the 4He in the lattice can be applied to 3He in a DT lattice accordingly. 

This thesis concentrates on the diffusion mechanisms and nucleus formation because 

of their relevance to bubble nucleation in heating experiments.  

The first physical observation is that with every single tritium atom decaying, one 

3He atom is created while the energy released by the decay (= 18.6 keV) would be 

enough to create an interstitial site. At this point we leave it open whether the net 

result is the creation of a vacancy and an interstitial or whether the 3He atom only 

occupies the spot of the decayed tritium atom in the lattice.  

 

3.2 Diffusion 
 

As soon as one 3He atom is present in the lattice, it will start moving around by 

random jumps to the neighboring lattice sites. These random jumps result in a certain 

distance that the atom will move in the lattice after a certain time (or a certain number 

of jumps). This movement is called solid state diffusion [9], [10]; it can happen to an 

interstitial atom as well as a substitutional atom, and it is highly temperature 

dependent. It is important to notice that interstitial diffusion is generally very fast 

compared to the vacancy or substitutional diffusion.  

Trinkhaus [8] points out the strong binding of the helium atoms to vacancies. This 

means that an interstitial 3He atom will move around freely in the lattice, until it falls 

into a vacancy. Once the atom occupies the vacancy it will require a much higher 
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energy to dislodge the atom for further diffusion. The energy required to move the 

helium atom from the lattice spot into an interstitial again is very large, which suggests 

that it will remain occupying the lattice site. Furthermore, there is space for more than 

one 3He atom in one lattice vacancy, which results in the possibility of another 

interstitial 3He atom falling into the vacancy, if the vacancy lies on the helium atom’s 

random path [11]. This results in the vacancies acting like traps; as a result of these 

traps, He-3 starts building clusters, as there will be more and more He-3 atoms 

accumulating in the vacancies [11].  

 

3.3 Nucleus Formation 
 
Now that we have established the fact that there is an increasing concentration of 

3He (with time) in the DT region and that the 3He atoms can diffuse into traps, we can 

assume that the traps will form into nuclei over a sufficiently long time period. 

According to Trinkhaus [8], the size and number density of these bubble nuclei are 

dependent on the temperature and the helium production rate. To be more precise, the 

bubble parameters depend on the diffusion rate and the helium concentration, with 

bubble formation occurring by concurrent diffusion and clustering of 3He.  

It seems reasonable to assume that the higher the overall concentration of 3He, the 

higher the 3He concentration trapped in clusters [11]. At the same time, the higher the 

trapped 3He concentration, the fewer the formation of new bubbles. This sort of self 

limiting mechanism is responsible for the bubble concentration to tend to a constant 

value over a sufficiently long period of time. Both this characteristic time and the 
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number density of clusters will depend on the temperature of the medium, the energy 

levels of different size clusters and other unknown parameters like the strength of the 

sink imposed by the traps.  

In addition, grain boundaries and other larger lattice defects can affect the 

diffusion and the trap strength. Diffusion along grain boundaries is extremely fast, 

while large lattice defects will trap gas molecules with a higher trapping energy than 

that of the lattice vacancies [9].  

N.M Ghoniem, S. Sharafat, et al. developed a model including all the different 

adsorption and emission energies of atom and atom clusters into a nucleation model 

for helium diffusion in different metals [12]; results for 3He in a DT lattice are not 

available yet. A model similar to the one developed by Ghoniem and Sharafat for 3He 

diffusion in DT would go beyond the scope of this thesis. A simplified model has been 

developed to give a rough idea of the bubble sizes occurring in our case. The 

assumptions and simplifications are presented in the next section.  

 

3.4 The Nucleus Formation Model  
 

A precise calculation of the number density and nucleus size of 3He gas in a DT 

lattice would require a time-dependent numerical model with all statistical 

possibilities, far too extensive to be within the scope of this thesis. Instead, the 

following model is proposed to provide a rough first estimate. The simplifying 

assumptions and physical justifications are explained here.  
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The time-dependent number density of 3He in the domain can be calculated from 

the decay of the tritium in the domain. The production of the gas within the lattice can 

be assumed to be uniform, since the decay happens at random. 

 

Fig. 3.1: The time-dependent concentration of 3He due to tritium decay is plotted 
here. Notice that for the time frame we are interested in (up to a few days) the 
behavior is almost perfectly linear (slope: 1.6069 x 10-6 moles/hour).  

 

A newly formed 3He atom will migrate through the solid until it falls into a trap (a 

vacancy for example). The calculations assume a homogeneous distribution of traps 

and focuses on the spherical domain surrounding the trapping site. 

Since we focus on a small part of the target domain (a spherical portion of a few 

microns in radius), the shape of the overall domain (in the target case the domain 

would be a hollow cylinder, the trap would be off- centered) is irrelevant, and we can 
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apply spherical coordinates to the small portion we are inspecting. The concentration 

on the innermost point of the domain is set to be zero, since we assume that the atom 

jumps into the vacancy, and doesn’t come back out. The assumption of having a sink 

or irreversible trap at a random point in the domain can be justified following the ideas 

presented in the sections above. Ref.[11], [13],  justifies the possibility of a 

continuously growing cluster by reporting that the closest lattice atom gets pushed into 

an interstitial position, if the number of 3He atoms in the cluster becomes too large. 

This creates a di – vacancy which provides more room for more 3He atoms. W.D. 

Wilson and, C.L. Bisson and M.I. Baskes [13] confirm that after the creation of a 

lattice vacancy 5 -8 atoms can conglomerate in the lattice. As more gas atoms fall into 

the vacancy trap, adjacent lattice atoms are pushed into an interstitial position 

providing space for the growing cluster. They also predicted a continuous growth of 

the nucleus as more and more atoms diffuse into the vacancy and call the trap 

‘insaturable’.  

N. Kawamura et alt. [14] confirm that most to the 3He created by the tritium decay 

will be trapped in the lattice of the frozen DT which supports the above described idea 

of insaturable traps.  

Ref. [11] also suggests that the assumption of an immobile vacancy capturing 

interstitial 3He atoms as they diffuse through the lattice can be defended. It is also 

mentioned by the author, that the trap effectiveness increases as the bubble nucleus 

continues growing.  

Ref. [10] confirms a high mobility of He atoms even at low temperatures (although 

in that case copper is used as a lattice material).  
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Based on these statements, it seems reasonable to assume a simple model with a 

trap in the center of the domain acting as an irreversible sink term. 

 Once we have an estimate of the number of 3He atoms which have migrated in the 

trap, an estimate of the radius of the formed 3He nucleus can be made. 

A key parameter in estimating the time for 3He to conglomerates in the nucleus is 

the diffusion coefficient of 3He in the solid DT lattice. In the literature, the following 

values were published for the diffusion coefficient: 

 

Table 3.1: Different values for the temperature dependant diffusion coefficient 
 

⎟
⎠
⎞

⎜
⎝
⎛−=

kT
EDD exp0                                         (3.2) 

 Silvera [15] (H2) Souers [16]  (H2) Souers [16] (DT) 

k
E , [K] 200 ±  10 191 310 

0D  [
s

m2

] 3E-3 1.4E-3 3E-4 

D (@ 

18K), 

[
s

m2

] 

n.a. n.a 9.95 E-12 

 

For the simple 1-D model, zero concentration is assumed as boundary condition in 

the center (trap location r=0) and zero concentration gradient as assumed at the outer 

boundary assuming equidistant traps.  
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Once the model returns the concentration profiles at each time step, we can 

compute the number of 3He atoms in the trap by integrating the concentration in the 

whole domain.  

 

3.5 Results from the Nucleus Formation Model 
 

Following the simplifications presented above, the 1-D solid state diffusion code 

was implemented. Figure 3.2 shows the 3He concentration profile as it changes every 5 

minutes. The overall concentration of 3He increases according to the tritium decay, 

while the trap effectively pulls a number of 3He atoms into the void. By integrating the 

green shaded area and multiplying it with the corresponding volume, the number of 

3He atoms in the trap can be computed.  
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Figure 3.2: The 3He-concentration as a function of the radial distance from the trap 
is plotted for 300 s time steps. The radius of influence for this plot is 10 microns. The 
green shaded area indicates the amount of 3He that diffused into the trap in 4 hours.  

 

Next, the effects of the radius of influence are analyzed. By using different sizes of 

radii of influence (or domain sizes), and plotting the respective final profiles after 4 

hours, figure 3.3 was created. We are interested in estimating, how many 3He 

molecules accumulated in the trap in four hours.  

The first observation is that for radii of influence larger than 6 or 7 microns, the 

profile remains unaffected over the time period considered (4 hours); at a distance 

larger than 7 microns from the center of the trap, the model predicts a constant 

concentration of 3He according to the tritium decay.  
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For smaller radii of influence the profiles change. Physically, imposing a small 

radius of influence means that two sinks are close enough for them to affect each 

other. The respective profiles can be extended by a mirror image to describe the 

adjacent trap.   

 

 
Figure 3.3: The profiles computed by the 1-D diffusion code are drawn here for 
different radii of influence. If the traps lie closely together, the overall 3He 
concentration in the domain will remain low, since the 3He gets trapped in the voids 
quickly after it was produced. If the traps are far apart from each other, they don’t 
influence each other and the amount of 3He trapped will approach a constant value. 
The minimum distance between two adjacent traps for them not to affect each other is 
related to the characteristic diffusion length.   
 
 Table 3.2 lists the values of 3He atoms trapped in a void using different radii of 

influence and various diffusion times. Larger values of the radius of influence result in 



18 

  

an increasing number of 3He atoms in the traps. For radii of influence larger than a 

certain value, the number of 3He atoms in the trap approaches a constant value (for 

each diffusion time). The value after which the number of 3He atoms in the trap 

remains constant is related to the diffusion coefficient and the characteristic diffusion 

length.  Figure 3.4 shows graphically the results from table 3.2; the number of 3He 

atoms per trap is plotted as a function of the radius of influence for different diffusion 

times. Notice that for longer diffusion times, larger radii of influence are required to 

reach a constant value of 3He atoms in the trap. 

 
Table 3.2: Numerical values for different diffusion times and radii of influence.  
 
Radius 
(microns) 1 hour 

Radius 
(microns) 2 hours 4 hours 8 hours 18 hours 

1.00E-06 1.41E+05 1.00E-06 3.42E+05 7.50E+05 1.57E+06 3.60E+06
1.30E-06 2.34E+05 2.00E-06 1.49E+06 4.48E+06 1.10E+07 2.73E+07
1.70E-06 3.39E+05 3.00E-06 2.19E+06 9.04E+06 2.86E+07 8.32E+07
2.00E-06 3.91E+05 4.00E-06 2.38E+06 1.17E+07 4.71E+07 1.69E+08
3.00E-06 4.51E+05 5.00E-06 2.40E+06 1.28E+07 6.03E+07 2.66E+08
4.00E-06 4.57E+05 6.00E-06 2.41E+06 1.30E+07 6.77E+07 3.57E+08
5.00E-06 4.57E+05 7.00E-06 2.41E+06 1.31E+07 7.10E+07 4.28E+08
6.00E-06 4.57E+05 8.00E-06 2.40E+06 1.31E+07 7.22E+07 4.78E+08
7.00E-06 4.57E+05 9.00E-06 2.40E+06 1.31E+07 7.26E+07 5.10E+08
8.00E-06 4.57E+05 1.00E-05 2.40E+06 1.31E+07 7.27E+07 5.29E+08
9.00E-06 4.56E+05 1.50E-05 2.40E+06 1.31E+07 7.27E+07 5.46E+08
1.00E-05 4.56E+05 2.00E-05 2.40E+06 1.31E+07 7.27E+07 5.46E+08
1.50E-05 4.55E+05 2.50E-05 2.39E+06 1.31E+07 7.26E+07 5.46E+08
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He-3 Accumulation in a Single Irreversible Trap 
using Different Radii of Influence and Times
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Figure 3.4: The 3He accumulation in a single irreversible trap using different radii of 
influence and diffusion times are plotted here. The longer the diffusion time, the 
further the distance between two traps has to be for the two not to affect each other. 
 

  Based on these results, a value for the radius of a 3He nucleus can be assigned 

to the number of 3He atoms in a trap after the phase change from DT solid to liquid 

has occurred by applying the ideal gas law. These results can be seen in figure 3.5. 

Assigning a value in the solid state is difficult, because the pressure in the trap is 

unknown, while the pressure in the liquid phase is easy to calculate. 
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Figure 3.5: This figure relates the number of 3He atoms present in a trap to a 3He gas 
nucleus radius in the DT liquid phase at 22 kPa that this trap would involve into. The 
figure also indicates what size nucleus to expect after 4 and 18 hours.  
 

 

3.6 Relevance to the Bubble Nucleation Model 
 
When relating the 3He gas accumulation in the solid DT lattice to a nucleus size in 

the liquid phase, we do that in anticipation of modeling a liquid to vapor phase change. 

This phase change is expected to happen according to classic nucleation theory. In this 

theory, a nucleus of a certain size is surrounded by a liquid of a certain pressure and 

temperature. If the temperature of the liquid is increased above a certain value, a 

thermodynamically unstable equilibrium is created, resulting in a bubble to grow out 
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of a pre-existing nucleus. If the pre-existing nucleus is created by non-condensable gas 

bubbles held in suspension in the liquid, as they do in our case, the nucleation mode is 

called heterogeneous nucleation [17], [18]. Collier states that the presence of dissolved 

gas reduces the superheat required to grow a bubble out of a nucleus of a certain size. 

Equation (3.3) relates the pressure inside the bubble to the pressure in the liquid. We 

observe an increase in pressure in the bubble as compared to the liquid pressure due to 

surface tension.  

b
fg r

pp σ2
+=     (3.3) 

The superheat required to produce an unstable equilibrium of a nucleus with radius 

br in a liquid of uniform temperature is described (in a simplified manner) by equation 

(3.4): 

bffg

SAT
SAT rpMiJ

TR
T

⋅
⋅

⋅⋅
⋅

=∆
σ22

  (3.4) 

(Parameters represented by symbols are listed in the nomenclature section) 

Clearly, if we want to avoid bubbles to nucleate in a system, smaller nuclei are 

desired, since the maximum allowable superheat is increased. In the following parts of 

this thesis, the relation between the onset of bubble nucleation in heated systems and 

the presence of nuclei of a certain size in a superheated liquid will be investigated. The 

results from this chapter will help us estimating what size of initial bubble nucleus to 

assume. 
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We can conclude from this chapter, that the decay of tritium into 3He affects the 

bubble nucleation in heating experiments and will also affect target survival if phase 

change is allowed. 
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4. The Model 

4.1 Overview 
 

The need for an accurate model to describe the mechanical and thermal 

response of an IFE target has been previously discussed at length [1], [2]. Research 

and modeling work so far focused on the consequences of phase changes within the 

target assuming a one-dimensional geometry. This approach leads to modeling a liquid 

and vapor layer at the outer edge around the target. As far as the solid liquid phase 

change is concerned this is a valid simplification, since we do expect a melt layer to 

form symmetrically around the target, but modeling the liquid to vapor phase change 

in one dimension only, disagrees with the bubble nucleation theory and experimental 

heating observations. The Los Alamos National Laboratory (LANL) conducted a 

series of heating experiments past the triple point on frozen DT targets in 2004 and 

presented the results at the HAPL meeting in June 2004 at UCLA [6]. The present 

work will first simulate these experiments and predict a similar behavior by numerical 

modeling in the cylindrical geometry used in the laboratory and then translate these 

results into spherical coordinates to establish an accurate design margin for the DT 

targets.  
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4.2 The Setup and Results from LANL Experiments 
 
 
 The series of experiments relevant to this study were referred to as “direct-

heating of solid DT layers” by the authors of the June 2004 HAPL presentation [6]. In 

that series of tests, a cylindrical target of 4mm diameter and 0.4mm height was 

exposed to direct heating from the outside using an electrical coil. The incoming heat 

flux was intended to be 1 W/cm2, but was estimated to have a 10% error margin due to 

heat loss through the outside interface of the coils (Fig. 4.1). Several sets of 

experiments were conducted using different equilibrium temperatures (16K, 17K, 

18K, and 19K) and equilibrium times (4hrs, 18 hrs). Pictures taken during the 100ms 

heat pulse clearly show bubble nucleation starting at different onset times and with a 

different bubble density on the outside layer of the target. Observations from that 

study indicate that there are relations between the equilibrium time and the bubble 

density as well as between the equilibrium time and the onset of bubble growth. We 

suspect that the foundation for these relations lies in the time dependant buildup of the 

3He concentration. These conjectures will be analyzed by a 2-D numerical heat 

transfer model and the results from the 1-D diffusion model from the previous chapter.  
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Figure 4.1: The experimental setup used at the LANL experiments is show here. The 
dark blue rectangles represent the cross section of the DT cylinder. Clearly the heating 
coils are mounted enclosing the outer surface. The pictures shown in the LANL 
presentation are taken along the axis of symmetry.  
 

4.3 From 1 -D to 2 –D 
 

 Since the LANL experiments impose a constant heat flux around the 

cylindrical target, a one dimensional model can accurately be used to describe the 

behavior of the target until bubble nucleation occurs. It has been shown in the previous 

section 3.6 that bubbles will nucleate, if the liquid is sufficiently superheated and if a 

nucleus of a certain size is present in the liquid (see also [17], [18] ). It has also been 

shown that these nuclei can occur due to the tritium decay to 3He (section 3.5). If we 
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assume a nucleus site of a certain size to be present, we can calculate the superheat 

required for a bubble to nucleate. After using a one dimensional model to simulate the 

heat transfer until that superheat has been reached at a given distance from the outer 

edge, the effect of bubble nucleation will be simulated by switching to a 2-D model.  

 The heat conduction and solid liquid phase change will be modeled in 1-D, 

since the expansion into the second dimension only increases the computing time 

required to achieve results. The conduction equation then reads as follows [20]: 
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Note that the only difference with the spherical coordinate system and equation (4.1) 

is that the last term is multiplied by two in the spherical case.  

 To account for the rapid change in thermal properties at temperatures in the 

cryogenic region, and to properly model the phase change, equation (4.1) includes 

temperature variant coefficients.  

Applying uniform spatial and temporal discretization to equation (4.1), it 

results in the following equation:  

: 
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This system of equations can be solved efficiently using the Thomas algorithm 

to second order accuracy in space and first order accuracy in time with no stability 

restrictions [21]. The subscripts note the variable’s’ location in space, while the 

superscripts note their temporal location.  

The boundary conditions imposed in this case are a constant heat flux on the 

outside and zero gradient at the inner radius ( 0r ). For the zero-gradient boundary 

condition at the inner radius of the cylinder, the temperature at the second node is 

simply copied and set as the value on the first node. The outer edge boundary 

condition follows equation (4.3). 
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Equation (4.3 c) will be plugged into equation (4.2) for the outer node [20].  

To model the solid to liquid phase change, the apparent pc method is adapted 

from the previous model [1]. The idea behind this method lies in the engineering 

approximation that the phase change and the jump in specific enthalpy affiliated with 

it happens over a temperature range rather than as a step with an infinite slope.  

Once it comes to modeling bubble growth, we need to switch to a two 

dimensional model. This adds complexity to the numerical simulation, since now the 
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equations can no longer be represented in a tri-diagonal matrix, but in a penta-diagonal 

system, which cannot be solved using the Thomas algorithm. Numerous methods are 

available to solve two and three dimensional systems (ADI, Spectral, …), [Pozrikidis] 

but the most efficient one in this case is an iterative scheme following the Gauss – Red 

– Black Algorithm [21]. This scheme converges quickly since the numerical solution 

doesn’t vary largely from one time step to another. The even quicker converging 

Multigrid method was implemented in the code [22], but fails when the coefficients do 

not vary smoothly, which is the case with phase changes. It is shown in Appendix C, 

but remains an academic exercise for this application.  

A stretched grid is implemented in the code to circumvent the problem of 

having a small enough grid spacing on the outer surface of the target (where phase 

changes occur, and bubble growth and steep temperature gradients are observed)  

while keeping the number of total grid points within a reasonable computational 

margin. A hyperbolic tangent function is used to stretch the grid in radial direction. 

The bubble will be modeled in the center of the pie-shaped domain; a hyperbolic sine 

function is used to stretch the grid in angular direction. This complicates the set of 

equations marginally but increases the overall performance and accuracy 

tremendously. To understand the equation (4.4), it is useful to know that the different 

grid spacings and locations are saved in a vector at the beginning of the code and just 

referred to as follows: 
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ir   Radius at the ith point 

ir∆   difference in radius between the i+1th and the ith point 

jθ∆   difference in angle between the j+1th and jth point 

The set of equations, using a 2-d hollow cylinder with temperature-dependent 

coefficients and a stretched grid are written in equation (4.4 (a) and (b)) . 

 

 Cylindrical Coordinates (4.4a): 
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Spherical Coordinates (4.4b): 
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 The imposed boundary conditions remain the same in the radial direction. In 

the axial direction periodic boundary conditions are used, so technically we could use 

a spectral method in the angular direction, but this has not been implemented in the 

present work.  

 Now we have to face the challenging task of modeling a 3-dimensional 

spherical bubble in a 2- dimensional cylindrical domain. 
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4.4 Modeling a Bubble 
 

The superheat required for a bubble of a certain size to grow can be calculated 

by using equation (4.5) [17]:  

*

2
rpi

TT
M
RTT

ffg

vaporsat
SATvapor

σ
⋅

⋅
⋅=−      (4.5) 

If we assume a nucleus of a certain size to be present in the melt layer (due to 

3He decay), the required superheat can be determined by the model as it is discussed 

so far. However, modeling the bubble nucleation and growth is a challenging task, 

since the bubble is spherical in geometry, and it is off center of our overall cylindrical 

domain. It has been shown though [18], that bubble growth in the time- and size-frame 

relevant to this study is heat flux restricted, which is convenient for our heat diffusion 

model. According to S. Van Stralen [18], the bubble grows exactly as fast as the heat 

can be delivered to the liquid – vapor interface, where it is used to account for the 

latent heat required by the mass flux of vapor into the bubble.   

Assuming that the vapor inside the bubble is at thermodynamic equilibrium, 

we can predict the temperature inside the bubble to be the saturation temperature at the 

pressure inside the bubble. We can relate the pressure in the bubble with the pressure 

of the surrounding liquid by equation (4.6).  

b
fb r

pp σ2
+=    (4.6) 

Clearly, the temperature in the bubble and the superheat required to grow the 

bubble are closely related (see eqs (4.5) and (4.6)).  
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This suggests that the bubble can be represented by a heat sink imposed into 

the domain. The temperature in the bubble is lower than the temperature in the 

surrounding liquid, drawing thermal energy to the surface. Numerically, we can add a 

heat sink term by assigning a certain temperature to an arbitrary point in the domain, 

which is lower than the temperature of the neighboring points. Physically, by choosing 

the location of such a point in the grid, the location of the nucleus and as such the 

point from which the bubble will start growing is determined. Once the necessary 

superheat to grow a bubble out of a nucleus of a certain size is reached, the 

temperature at that point gets dropped, starting the heat sink. This is justifiable since 

we assume a nucleus filled with 3He to be present in the superheated liquid. Once the 

temperature in the surrounding liquid is higher than the saturation temperature at the 

pressure in the bubble, DT starts evaporating into the bubble, making it grow. Once 

the bubble grows the pressure in the bubble drops even further (see eqn 4.6) lowering 

the temperature as well.  The energy which the heat sink absorbs will be conserved in 

the system, as energy in form of latent heat is required to evaporate some DT to make 

the bubble grow. As such, the energy flowing into the heat sink must be tracked and 

equated to the energy required evaporate enough DT to grow the bubble from one time 

step to another. This energy can be calculated using the heat flux equation (4.7a) and 

the area over which this heat flux acts (4.7b). When applying this equation to the grid, 

we need to realize, that the first term in the brackets of eqn. (4.7b) is the heat transfer 

in the radial direction, acting over the change in angular direction while the second 

term represents the heat transferred in angular direction over the change in radius.  
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Figure 4.2: Different modes of bubble growth are shown in this figure. On the left, the 
bubble grows outward radially symmetric from a point in the middle of the domain. 
On the right, we assume the bubble nucleus to be close to the outer edge of the 
cylinder, and the bubble growth happening inward.  

 

The obvious physical observation suggests that the energy is used by the 

system for the liquid to vapor phase change at the interface of the bubble. Because of 

the discretized nature of our domain, bubble growth can only be modeled step wise. 

We propose two modes of bubble growth, shown in Figure 4.2.  The bubble growth 

follows the grid either radially symmetric outward (left) or inward from the outer edge 
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of the domain as shown on the right. More involved modes could be implemented to 

model a more spherical shape, but the presented results used these two modes. 

 We are now able to calculate the area that each ‘bubble’ covers on the grid at 

each step. Noting that the area of the ‘bubble’ on the gird is related to the volume by 

unit height of the cylinder, we can calculate the amount of heat necessary (per unit 

height) to grow the bubble from one step to the next. Knowing the heat required to 

grow the bubble on the one hand and the heat flux into the bubble from the heat sink 

model on the other (see Figure 4.3), we are now able to model bubble growth by 

matching the two. The only free parameter left for adjustment is the time step. 

 

Figure 4.3: this figure shows the schematic approximation of how a bubble is 
represented in the overall domain. Notice that the heat transfer into the bubble comes 
from the temperature difference in radial and angular direction.  
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The numerical simulation consists of the following steps:  

First, the grid is created. Since we have a fixed mesh, the bubble sizes that will 

be represented by the model are determined by that.  

Second, the model runs in 1-D for uniform heat fluxes until the superheat at the 

point specified for bubble nucleation is reached.  

Then, we switch to a 2-D model. This model first calculates the heat required 

for bubble growth at that time step. After that an iterative scheme is used to find the 

right size of the time step to conserve the energy of the system. Once the time step is 

found, the bubble grows from one step to the next; the temperature of the points of the 

new bubble is adjusted to the saturation temperature of the pressure in the bubble, 

creating a larger heat sink.  

Several points must be considered using this approach to accurately compare to 

the ‘real physics’ of bubble nucleation.  

 

4.5 Approximations to the Bubble nucleation model 
  

 The first problem we encounter derives from the discretized (step wise) growth 

of the bubble we model as compared to the smooth, gradual growth in real physics. In 

the model, a heat sink is applied on the domain. The profile relaxes over the time step 

according to the heat diffusion equation. The gradient flattens and subsequently the 

heat transfer into the bubble slows down as the profile relaxes. The problem we are 

now facing is which profile to use for the heat flux into the bubble, the one 

immediately after the heat sink is defined at the beginning of the time step, or the 
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flatter one at the end of the time step. Both profiles are artificial creations originating 

from the step wise growth of the bubble. In this model we propose to use half the heat 

flown into the bubble according to the initial profile, and half of the heat flown in 

according to the final profile.  

 The second problem to be handled also results from the step wise growth and 

concerns the conservation of mass in the system. The density of the vapor in the 

bubble is about 1000 times lower than the density of the liquid. By creating the 

bubble, the volume of the whole cylindrical domain increases. For small bubbles in a 

large domain, this increase in volume is negligible, but this imposes some limitations 

on the model for larger bubble sizes. One aspect impacting the bubble growth is the 

way the temperature field around the bubble changes as the bubble grows. Bubble 

growth pushes the liquid mass surrounding the bubble out. The mass in then 

distributed then over a larger radius. This means that a point where the temperature 

has been computed at the previous time step moves to a different location as the 

bubble grows. We have to calculate the new temperature of the point represented in 

the grid (Figure 4.4).  To get the exact place **
5,4,3,2,1r  at which to compute the 

temperature ( )1
5,4,3,2,1

+nrT , we need to account for this radial effect and for the 

conservation of volume (Figure 4.5).  
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Figure 4.4: The simplified bubble growth modeled in the code makes the bubble size 
jump from one grid size to another. In doing so, we need to move the profile radially 
outward. The volume surrounding the bubble on the left between the grid spacing is 
different than the volume between the grid spacing on the right due to radial effects.  
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We then use linear interpolation between the respective points to get the 

temperatures.  
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Figure 4.5: As the bubble grows, the temperature field needs adjustment. The 
temperature at a specific radius away from the bubble is computed by interpolation 
between the neighboring points at the previous time step.  
 
 
 When modeling the bubble nucleation by just assigning a lower temperature 

value at the grid point determined to represent the bubble, the model will be unable to 

resolve any heat transfer through the bubble. Neither will the model be able to express 

a temperature gradient through the bubble. By looking at the physics, it can be 

reasoned, that the thermal resistance through the bubble is much higher than through 

the liquid surrounding it, suggesting, that the heat flowing through the bubble will 

have no effect compared to the temperature distribution around the bubble. Looking at 

the mean free path of the gas molecules inside the bubble, we can justify the constant 

temperature assumption within the bubble.  
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4.6 The Spherical Bubble Model 
  

When applying the above model to spherical coordinates, a 3-D bubble can be 

modeled with a 2-D code. Symmetry around one axis makes this possible as will be 

shown below: 

 

Figure 4.6: When modeling a bubble in 2-D in spherical coordinates, physics allows us 
to model a 3-D shape, by rotating the (blue) shape around on axis of symmetry. The 
boundary conditions at the rotating axis must be symmetrical, while we impose (zero-
gradient) Newman boundary conditions at the outer edge of the rotating angle.   
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The model follows the same scheme described in the preceding section, the 

only difference being the following different formulas for heat diffusion and heat flux: 
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Note that in equation (4.10) we integrate the heat flux over a complete area of the 

bubble as opposed to integrating over a length and leaving the other dimension to be 

unit length.  

In doing so, we have to compute the heat required to grow the bubble also as the total 

heat instead of heat per unit length.  
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5. Testing the Model against Analytical Solutions 
 

Before we try to analyze the LANL experimental results or predict the behavior in 

the IFE target case, the model needs to be checked against analytical solutions for 

well-defined cases. 

5.1 Liquid to Solid Phase Change – Melting and Solidification 
 
In order to establish accuracy of the solid – liquid phase change as it is modeled in 

the code, an analytical solution had to be found, and the numerical and analytical 

results needed to be compared. As has been previously proposed, the apparent pc  

method is used to model the phase change. This idea has been implemented and tested 

in the spherical code [1], but remained untested in the cylindrical case.  

Ozisik [23] derived an analytical solution for the case of a heat sink in the center 

of a cylindrical domain. As the heat sink -surrounded by initially superheated liquid- is 

turned on, a cylinder solidifies growing symmetrically outward in radial direction.  

This solution is given by the following set of equations: 

Find the coefficient λ  using equation (5.1) 
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Useλ to compute the thickness of the solid layer and the temperature profiles in 

the two phases using equations (5.2) – (5.4): 
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Ei is the exponential integral and exp the exponential function 

 

The following figures (5.1 and 5.2) show a plot of selected profiles following 

equations (5.3) and (5.4) for selected times at a certain heat strength and compare 

those with the results of the code applying the boundary conditions corresponding to 

the input parameters of the analytical solution.  

Numerical problems evolve on both ends of the domain, since we need to impose a 

close to infinite slope at the center and an unknown slope on the outer edge. The r=0 

boundary condition is resolved by computing the heat flux between two points at a 

certain distance from each other (according to the grid) analytically for a certain sink 

strength, assuming that it stays constant over time, and imposing this slope between 

the first two points in the numerical grid. The outer boundary condition is set to be 

zero heat flux, which is acceptable for small times. To be exact on that side we would 

need to compute the heat flux as a function of time at the outer edge, and impose that 

heat flux in the model between the two outermost points. 
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Figure 5.1: This figure shows the profiles for two selected times in the solidification 
process. Note the discrepancy due to the boundary conditions which could not be 
imposed in a straight forward manner. 
 

 
Figure 5.2: This figure shows the time dependent thickness of the solid layer in the 
solidification process. Both solutions lie within a 5% error margin of each other, 
which is acceptable for our application.   
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5.2 Liquid to Vapor Phase Change – Bubble Nucleation and 
Growth 

 
According to Van Stralen [18], bubble growth can be divided into three different 

stages. In the first stage (initial mode 0→t ), the bubble growth is restricted by 

hydrodynamic inertia effects. In this stage the bubble growth is linear with time, 

according to the Rayleigh solution. As the bubble grows, it has to accelerate the 

surrounding liquid as it pushes it radially outward.  

In the second stage (asymptotic mode ∞→t ), the description of the bubble growth 

can be simplified to a heat diffusion model. The bubble growth is proportional to the 

square root of time. The bubble grows as fast as the heat required to grow the bubble 

can be delivered to the interface, where it is used to evaporate the liquid. 

The third stage is a transient stage, which lies in between the previously mentioned 

modes. Both of these restricting factors can impact bubble growth.  

For the time scale and bubble sizes we are interested in, we can safely assume that 

the bubble growth is heat flux restricted. This means that the bubble will grow as fast 

as the heat necessary to grow the bubble can diffuse to the interface. As discussed 

above, we can easily model this scenario, since we are already simulating heat 

diffusion in our model; as a result, we can use the information from the code and apply 

it to bubble growth.  
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5.3 Equations 
 

Bubble nucleation and growth occur whenever a sufficiently large liquid superheat 

and a sufficiently large nucleus in the liquid phase [17], [18] are present.  Let us start 

by examining the behavior of vapor bubbles during nucleate boiling: the growth of a 

free, spherical vapor bubble in an initially in a uniformly superheated liquid of 

homogeneous composition.  

Following the derivation from the ‘Bosnjakovic Theory for Isobaric Heat 

Diffusion Controlled Growth’ [18], the bubble behavior can be described by equation 

(5.5) and (5.6).  

( )
5.0

2 ⎟
⎠
⎞

⎜
⎝
⎛⋅≈
π
α tJatr l

b     (5.5) 

SAT
fgvapor

liquidpliquid T
i

c
Ja ∆=

ρ
ρ ,  (5.6)  

Using the definition for the thermal diffusivity, we expand the equation to (5.7): 
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The values used for this calculation are extracted from Souers [16]. They read: 

)liquidα =7.8E-8
s

m2

 SATT∆  = 2.00 K   k liquid  = 0.1
Km

W  

  fgi = 1360
mol
J     gasρ =130 3m

mol  
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 The following simplifications have to be implemented in the code:  

- The liquid temperature in the whole domain is initially 22 Kelvin ( SATT∆  = 

2.00K).  

- The temperature in the bubble is 20.00 K at all times. In applying this 

boundary condition, we neglect the increase in temperature due to the increase 

in pressure by surface tension effects (eqn. (4.6)). The effect of the pressure 

and temperature increase can be implemented in the numerical code for 

experimental simulations, but will be omitted here to model the analytical 

solution. Also, the real value of the gas temperature at the surrounding pressure 

(triple point temperature 19.79 K) cannot be used, since, for modeling reason 

we assume that the solid – liquid phase change occurs over a discrete 

temperature range between 19.79 and 19.99 K [1]. In order to always account 

for the latent heat required for the solid to liquid phase change, we have to use 

the lowest possible value of the liquid temperature, which is 19.99K.    

- The density of the gas is computed by using the ideal gas law and is 

approximated to 133 mol/m3. In the actual case, as the pressure and the 

temperature inside the bubble change, the gas density will follow these 

changes according to the ideal gas law.  
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5.4 Results for Cylindrical Model (per unit height) 
 
 

Under the previously stated assumptions, the growth rate is calculated and plotted 

in Fig 5.3. The figure 5.3 also shows the growth predicted by the numerical model, 

using the same assumptions. Considering the approximations in the bubble model and 

in the heat flux causing bubble growth, the modeling results compare reasonably well 

to the analytical results. The model can then be applied to simulate the LANL 

experimental results with some degree of confidence.  

The model shows good congruency of the plots when different grid stretching 

coefficients are used. By changing the grid stretching coefficients, the bubble sizes are 

changed. The more the grid is stretched, the smaller is the difference in bubble size 

from one size to another.  

Bubble Growth in Uniform Superheat 19.79 K - 22.00 K 
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Figure 5.3: The growth of the bubble is plotted in this figure both using the 
numerical approximation and an analytical result using the previously described 
boundary conditions. Clearly, the two plots are similar in shape and value, giving 
us confidence in modeling assumptions.  
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Similar accordance could be reached using different superheat values in the 

domain. The “radius of influence” or the temperature boundary layer is found to be 

sufficiently simulated by the model if the closest 10 or 20 points are updated after each 

iteration. 

The “slide show” in figure 5.4 shows the development of the bubble over time. 

Notice that the gradient around the bubble remains very steep indicating a rapid heat 

transfer to the bubble surface.  
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Time:    4.86 E-6s 
Radius: 2.94 E-6m 

 

Time: 3.52 E-5s 
Radius:1.88 E-6m 

 

Time: 8.53 E-5s 
Radius:3.97 E-5m 

 

Time: 1.47E-4s 
Radius:5.66 E-5m 

 

Time:  2.23E-4s 
Radius:8.69 E-5m 

 

Time: 3.15E-4s 
Radius:10.5 E-5m 

 

 
Figure 5.4: this slide show presents the evolution of the temperature field around 

the bubble in a pie shaped cylindrical domain. The uniform superheat surrounding the 
bubble was initially 22 K. We see that the thermal boundary layer around the bubble 
remains small leading to steep gradients and a high heat flux into the bubble.  
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Input values used in the code (HEADER) (for future references): 
  

 Cs= 1.0 (coarse) 2.0 (middle) 3.5 (fine)! stretching factor in radial direction 
 Cst= 1.3 (coarse) 2.8 (middle) 4.0 (fine)! stretching factor in theta direction 
 g%nr= 100   ! Grid calculated to have (close to ) quadratic 
      g%nt= 75              ! patches where we want to model the bubble 
      n1= 100;             ! # of rb iterations at various points 
      Rad= 0.002;           ! outer radius of the DT shell 
      Rad_inner= 0.0016; 
      pi= 3.1415; 
      total_angle= pi/8   
 
 bubb_loc= 35  ! # of nudes the bubble nucleates inside the 
    ! outer rim of the cylinder 
 bubble_steps= 25 ! number of bubble steps 
 surf_tens= 3.9E-3 ! surface tension of liquid DT (temp. dep) 
 press_liquid= 22000 ! pressure in liquid (will change later, but  
    ! good for now) 
 lat_heat= 1350  ! latent heat of vaporization (temp. dep)  
 gas_const= 8.314 ! gas constant 
 
 

5.5  Results for Spherical Model 
 

As discussed in the previous section, the spherical model can simulate a 3-d 

bubble using the symmetry around one axis. As a result, the only approximation we 

have in our code is the non-spherical shape of the bubble and the simplifying 

assumption of utilizing an effective heat transfer into the bubble based on a 

combination of the initial and final temperature profiles at each time step. The non- 

spherical shape should not have a great importance as the error induced by it is 

expected to be small.  

The spherical model also shows a good simulation of the analytical bubble growth, 

even if different grid sizes are chosen. Like in every numerical simulation, the finer 

the chosen grid is, the closer the solution follows the analytical result.  
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Figure 5.5 shows the bubble growth predicted by our model for the same case as 

figure 5.4. The 22 K uniform superheat and the same geometric properties are used; 

we have simply changed the heat diffusion equation and the heat flux equation from 

cylindrical to spherical coordinates.  

As a grid is chosen which models very small bubbles, the numerical solution 

follows the analytical plot closely (green curve). But if we are interested in bigger 

bubbles and longer times, a coarser grid can be chosen to speed up the code. In that 

case, a large error is observed initially, but for bigger times, the bubble radius 

predicted by the model agrees with the bubble sizes an analytical calculation would 

give.  
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Figure 5.5: Good accordance between the analytical uniform superheat equation 
and the bubble growth predicted by the model is shown here. Where exactly the 
divergence comes from and how it can be erased could be further analyzed, but for our 
desired accuracy this model seems reasonable.   
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6. Comparing the Results from the Computer Model to 
the Experimental Results from LANL 

 

After having successfully tested the numerical simulation against analytical 

solutions for cases with simplified boundary conditions, we used the model to 

simulate the behavior of the LANL cylindrical targets during heat flux experiments. 

This modeling will help to explain the physics behind the LANL experimental 

observation, and to gain insight on the thermo-mechanical behavior of the spherical 

IFE targets.  

  

6.1 The Solid – Liquid Phase Change 
 

Please see Section 4.2 for the schematics and description of the LANL 

experimental setup.  The experimental values were given to us directly from LANL 

[24]. 

As a first step we focused on the solid- liquid phase change. The measured 

thickness of the melt layer in the experiment and the corresponding results from the 

code are plotted in figure 6.1. The experimental results are based on post-test 

examination of pictures of the DT whose range of uncertainty tends to be higher for 

thinner melt layers.  

Clearly there is a large discrepancy between the calculated (numerical) and the 

observed (experimental results).  

The applied boundary conditions are:  
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Initial temperature -  18K 

Heat flux ( q ′′& ) -  1W/cm2 

Outer Radius -  2mm 

Inner Radius -   1.533 mm 

From figure 6.1, it can be seen, that the modeling results show a slope similar to 

that of the experimental results, but shifted down by about 50 µ m on the local axis. 

Appendix H shows a computation of the heat required to grow a melt layer 

according to the LANL observations and compares the result to the total heat induced 

into the target by the heat flux. From this simple energy calculations based on the 

latent heat of DT, it seems clear that the melt layer cannot reach the reported thickness 

within the reported time when a 1 W/ cm2 heat flux is imposed. 

In addition, the model indicates that a time of about 13 ms is required for the DT 

to reach its triple point (this is a pretty reliable result from the previously verified 

thermal conduction part of the code). This time, experimental results indicate a jump 

in the melt layer thickness to about 50 µm within an additional 11 ms, which is 

difficult to believe. 

In search for possible explanations on the apparent discrepancy in the experimental 

results, the following possible factors resulted from direct discussion with LANL [24]: 

- The melt depth measurements carry an uncertainty due to difficulties in 

determining exactly where the melt layer interface is actually located. The 

convex DT ice surface, through which the pictures leading to these results 

were taken distorts the picture and could lead to a misconception about the 

exact location of the solid to liquid interface. 
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- Due to the complexity of the heating apparatus, the exact heat flux imposed 

on the target during the experiment could not be exactly determined. While 

the electrical power to the resistors can be determined quite accurately, 

heat losses at the back and ends of the experimental set-up and the 

possibility of additional heating due to light sources can result in 

significant uncertainties. These could cause an underestimate of the heat 

flux by up to a factor of 2 (as an upper limit but probably closer to a factor 

in the range of 1 – 1.5).  

- Non- uniformity of the melt layer could also be a possible reason affecting 

the experimental results, but this was thought to be rather unlikely based on 

LANL observations. 

Next, we tried to find a heat flux that would give a similar melt layer thickness as 

the LANL experiments showed. The results are plotted in figure 6.2. The results 

indicate that the heat flux should be increased by a factor of about 3 in order for the 

modeling results to reproduce the experimental observations; this is well over the 

maximum uncertainty factor of 2 on the heat flux and indicates that another factor has 

to be in play, which is likely to be the uncertainty in the melt layer measurements. 
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Melt Layer Comparision
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Figure 6.1: the melt layer thickness calculated by different models available (previous 
and new spherical model (1-d and 2-d) as well as cylindrical case) are plotted here. 
Notice that there is only a small difference between the cylindrical and the spherical 
coordinate geometry. There is a clear difference between the numerical simulations 
and the LANL observations. 
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Figure 6.2: The heat flux is increased to get closer to the experimental results. If we 
apply a heat flux three times as big as previously assumed, the results become close. If 
that heat flux was imposed though, we should observe a melt layer over times shorter 
than 20 ms which have not been reported so far.  
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Figure 6.3 superimposes the different scenarios. Different initial temperatures and heat 
fluxes have been applied. The solution look the closest for 18 K and 4 W/ cm2 or 19 K 
and 3 W/ cm2 for initial temperature and heat flux respectively.    
 

Further comparison between different sets of experimental data would be required 

to better understand where exactly the discrepancies come from. 
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6.2 The Bubble Nucleation Simulation 
 

For the initial bubble nucleation analysis, we assumed a heat flux of 1.00 W/ cm2, 

consistent with the value of 0.92 W/ cm2 reported by LANL (i.e. with no correction for 

possible uncertainties in the heat flux). 

The main observation to be recorded when comparing the bubble growth from the 

LANL heating experiments to the uniform superheated solution is that the bubbles 

grow much slower in the experimental setup. As we show in this chapter we observe 

two different stages of bubble growth during the heating experiment. In the first stage 

explosion-like bubble growth is observed. The temperature in the bubble is much 

lower than the liquid temperature all around it providing a lot of heat for vaporization 

and bubble growth. During this stage the bubble growth rate is close to the uniform 

superheated case.  

In the second stage, the temperature in the liquid on the side of the bubble 

opposing the wall is lower than the temperature in the bubble. In this stage some of the 

heat flows “through” the bubble into the liquid behind it leaving less energy to grow 

the bubble.   

Figure 6.4 illustrates the temperature profile around the bubble at the two different 

stages.  
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Figure 6.4: On the left side the bubble is shown in the fast stage of bubble growth. The 
liquid all around the bubble is at a higher temperature than the bubble, causing it to be 
a strong heat sink. On the right side, the picture zoomed closer to the bubble, showing 
that the heat flux into the bubble (the back  -right side of this picture) can be 
differentiated from the heat flux out of the bubble (front-left of the picture), as the 
gradient is reversed for the two cases.  

 

When simulating the bubble growth using the model as described and tested in the 

uniform superheated case and comparing that data with the observations from the 

LANL experiments, certain assumptions about the conditions have to be made. These 

include the pressure in the liquid during the heating experiment, the nucleus size 

present in the liquid before the heat pulse is started, strength of the heat pulse and the 

initial temperature. While the heat flux and the initial temperature can be taken from 

the LANL report, educated guesses have to be made about the nucleus size and the 

liquid pressure.   

Based on the results from the simple 3He diffusion model (chapter 3), two different 

nucleus sizes have been tested: 1.6 um and 0.4 um for the 18 hours and 4 hours 

layering time respectively. The liquid pressure was assumed to be 22 000 Pa, slightly 

higher than the saturation pressure at triple point.  
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The LANL measurements give two sets of bubble diameters: one is the bubble size 

measured by looking through the liquid DT, and the other one measured by looking 

through the solid layer. At this point it is important to know that these measurements 

are quite rough and can only be used to give us an approximate idea of the bubble 

sizes. Figure 6.5 shows one of the images used to measure the bubble diameter, from 

which the difficulty of making an exact measurement can be appreciated [24]. 

 

Figure 6.5: This picture was taken during the LANL heating experiment. Frames 
like this are used to evaluate the bubble diameter at each time step. It can be seen that 
there are different size bubbles throughout the domain, one of which being selected 
and measured as the bubble grows. Also very remarkable is the double view of the 
bubbles, once through the solid and once through the liquid (as indicated). 
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Figure 6.6 shows a plot of the bubble diameter as a function of time for the two 

different nucleus sizes, and Figure 6.7 shows the temperature distribution around the 

bubble at different stages (as indicated in Figure 6.6). 

The results shown in Figure 6.6 suggest that the smaller nucleus size requires a 

higher superheat temperature to grow into a bubble, causing it to start growing at a 

later point. Meanwhile, since it is surrounded by liquid at a higher temperature, it 

grows very fast until the conditions for slower growth are established.  

The results from the model for the assumed case seem to simulate reasonable well 

the experimental results. However, it should be noted that there are uncertainties in the 

bubble measurements (perhaps of the same order as for the melt layer measurements), 

which can shift the results. Moreover, even in this case, the slope of the modeling 

results for bubble growth is comparable to that of the experimental results.  

 

Figure 6.6: The two different stages of bubble growth can be seen: very fast initial 
bubble growth (the lines appear to be vertical), and slower growth as the temperature 
of the bubble opposing the wall is higher than the temperature of the liquid that is 
faces.  
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Figure 6.7: the temperature profiles during bubble growth are shown at the 

indicated times and respective bubble diameters. Notice the correlation between the 
temperature field in the first two pictures and the corresponding fast growth rates as 
opposed to the temperature fields in the last two slides matching the conditions for 
slow growth. 

 
These trends indicate that the assumptions used in the model are reasonable. 

Notice that, according to the code, the bubble grows deeply into the solid layer. 

Analyses of solid DT around the TP indicate its low strength, which could infer that 

the bubbles could grow by pushing the liquid in the melt layer as well as the soft solid 

(a trend also indicated by LANL’s initial observations but requiring more accurate 

experimental confirmation). 

Bubble Growth 
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 In order to better understand the influence of the nucleus radius on the onset of 

bubble growth, we plotted the superheat required for bubble growth as a function of 

the nucleus radius. Figure 6.8 shows the results.  

 

Figure 6.8: the superheat required for different size nuclei to grow into bubbles is 
plotted. Clearly, once the nucleus is greater than 1.5 microns, the superheat 
required is less than one degree, with only slight changes for larger nuclei.  
 

From this figure we can see, that a radius bigger than 1.6 micron is only going to 

have little effect on the superheat temperature (and consequently the onset time of 

bubble growth assuming a certain heat flux). If the bubbles were smaller than 0.4 

microns, very high superheat temperatures will be required leading to even later onset 

times for bubble growth. We expect the bubble growth in such cases to be extremely 

fast until bubble sizes similar to the sizes from earlier onsets will be reached.  
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6.3 Varying different Input Parameters 
 
An interesting study would be to investigate the influence of the surrounding 

liquid pressure on bubble growth. An increase of the saturated vapor temperature in 

the bubble would follow an increase of the liquid pressure, causing the bubbles to 

nucleate later in time. Since at pressures higher than triple point pressures it is possible 

to have a liquid cooler than the bubble temperature on the side opposing the incoming 

heat flux, we expect the bubble to remain smaller. Figure 6.9 shows the influence of 

increased pressure on bubble nucleation and growth.  

 

Figure 6.9: Higher liquid pressures influence both the onset of bubble growth as 
well as the size at which the bubble growth slows down and the speed at which the 
gradual bubble growth happens.  
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Because of the importance in the target case, the temperature fields for different 

pressures are shown in Figure 6.10.  Notice the higher temperature in the bubble 

allowing for a heat flux leaving the bubble without the need of penetrating the solid 

layer.  

 

 

 
Figure 6.10: The temperature fields of the three phases at different pressure 

scenarios are shown here. The bubble diameter at which bubble growth stagnates is 
smaller than the melt layer in the left case (high pressure), and larger than the melt 
layer on the right side (low pressure).  

 
As a final step in the interpretation of the data sets resulting from the LANL 

experiments, we need to analyze the relation between the initial temperature and the 

onset of bubble growth. Figure 6.11 shows the bubble growth for the 1.6 um bubbles 

applying various initial temperatures.  

 
  

High pressure case Low pressure case 

Heat flows out
of the bubble 

Heat flows into the 
Bubble 

Melt Layer

Solid Phase 

As the heat flowing out of the bubble gets close to the heat flowing into the bubble, the 
“explosive” bubble growth stops abruptly, and a more gradual growth rate sets in. 
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Bubble Growth applying different Initial Temperatures 
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Figure 6.11: As the initial temperature is lowered, the onset of bubble growth is 

delayed. The speed of gradual bubble growth is also found to decrease with decreasing 
temperatures (from the modeling results).  

 

6.4 Summary 
 
 
The following observations can be made from the analysis of the LANL 

experiments. 

As described above (section 6.1) there is a large discrepancy between the results of 

the model and the experimental results for the melt layer thickness. The main reasons 

behind these discrepancies are believed to origin from difficulties in measuring and/or 

determining the exact melt layer location. The drastic increase in heat flux required to 

match the reported melt layer numerically is believed to be unlikely.  

For the bubble growth, the model delivers good explanations for some of the 

experimental observations. The series of pictures shot during the heating experiments 

show sudden occurrence of bubble of a significant size at a certain time after the start 
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of the heat pulse. The temporal resolution of the picture series is too low (4ms 

between two shots) to resolve the behavior of the bubble before it reaches rather large 

sizes (40 microns). From the model we know, that the bubble nucleation and initial 

growth happens very fast (within a few microseconds). Because the bubbles nucleate 

in an environment characterized by a steep temperature gradient across the domain, we 

know that stagnation in bubble growth occurs when the temperature gradient on the 

side opposing the incoming heat flux is negative, causing most of the incoming heat to 

flow through the bubble rather than being entirely used to grow the bubble.  

As a result, two different modes of bubble growth can be distinguished, fast initial 

nucleation and slower gradual growth. The LANL data can only show the gradual 

growth, but the size of the suddenly occurring bubbles suggests fast initial nucleation 

and growth.   

At pressures slightly higher than triple point pressure, the model predicts that the 

bubble grows deeply into the solid layer. Whether this is physically possible or not, 

needs to be determined by further experiments. Comparing the melt layer thickness 

data from LANL with the bubble sizes and the fact that solid DT around triple point 

temperature is reported to have a very low strength, bubble growth into the solid layer 

can be explained.  

If the heat flux could be determined with certainty, the model could be used to 

estimate the size of the nucleus. Knowing the onset time of bubble growth, the 

superheat of the liquid can be quantified; from the superheat, conclusion can be drawn 

for the minimum nucleus radius present in the liquid. The case studied for this thesis, 
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suggests a nucleus radius of around 1.6µm (assuming the heat flux to be close to 1 W/ 

cm2). This result is in good agreement with the estimates from chapter 3.  

Additional parametric studies result in the following relations between input 

parameters and bubble growth: 

A larger nucleus radius results in an earlier onset of bubble growth; this statement 

can be explained by the higher pressure and saturation temperature in a bubble of a 

smaller radius due to the surface tension (equation 4.6: p ~ p(liquid)+1/r).  

The higher the liquid pressure, the more delayed the bubble nucleation. This is to 

be expected, since a higher liquid pressure will lead to a higher saturation temperature 

of the vapor in the bubble. In order for the bubble to grow, a higher liquid temperature 

will be required. Also, as a higher liquid pressure is applied, resulting in a higher 

temperature in the bubble, the bubble will not grow as deeply into the solid layer. 

The influence of the lower initial temperatures is less surprising as has been 

discussed previously [1].    

The next step following the outline of this work is an attempt to predict the thermal 

behavior within the spherical target as it is injected into the chamber. From the LANL 

studies and the conclusions drawn after numerically modeling the experiments, we 

know that the pressure in the liquid phase will have a significant influence in the 

bubble growth indicating that we need to focus not only on the thermal, but also on the 

mechanical behavior of the target.  



68 

  

 

Table 6.1: Numerical Input parameters for the different cases: 

Nr = 100 Nt = 75 R inner = 1.533mm R outer = 2mm Theta = pi/16

Stretching 

factors 

Radial = 0.9 

Radial = 2.0 

Angular = 2.0 

Angular = 4.1 

Large bubble 

Small bubble 

1.6E-6 

0.4E-6 
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7. Application of the Bubble Growth Simulation to the 
Spherical Target Geometry 

 

Following model validation by comparison with analytical results for controlled 

example cases and the interesting results from simulation of LANL experimental 

results, the model was applied to simulate the spherical target behavior in an IFE 

chamber during injection. The previous model [1] has taken the thermal influence of 

the plastic shell as well as different properties for the DT – foam region into account. 

Here, for simplicity, these corrections are neglected, since their influence is small 

when simulating phase change and bubble growth. We will assume direct heating of 

the DT due to radiation and convective heat transfer as discussed in chapter 2, and will 

consider the confining and compressing effect of the plastic shell on the expanding DT 

melt layer. 

7.1 Increase in Pressure due to Melt Layer Growth 
 
 

When projecting the main conclusions from chapter 6 onto the target case, it 

becomes apparent that the influence of volume expansion during the solid to liquid 

phase change inside the plastic shell on the pressure buildup inside the target needs to 

be studied. As the volume of the DT expands during such a phase change, it is 

confined by the outer plastic shell and the inner DT solid sphere, leading to an 

increase in pressure inside the target. This increase needs to be quantified and its 

effects included in the numerical simulation. In order to do so, an additional loop 

needs to be included in the code to compute the pressure buildup due to the growth of 
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the melt layer. The increasing pressure in the liquid phase of the DT results in an 

increase of the saturation temperature inside a nucleus (which we assume to be present 

due to the tritium decay as discussed in chapter 3). We can plot the melt layer 

thickness against the pressure in the target neglecting the small volume changes due to 

changes in the bubble size. This approximation is reasonable considering how small 

the change in bubble volume of one bubble is as compared to the volume of the 

overall domain and the volume change due to the melt layer growth. Of course, as 

more bubbles grow simultaneously, this effect needs to be considered. However, since 

the goal of the simulation is to find the parameter space that would avoid bubble 

growth, this event can be considered outside the bound of this analysis.  

In order to compute the pressure buildup, the following reasoning, equations, and 

material properties are used (explanation of the symbols can be found in the 

nomenclature section) following [25]:  
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Pressure buildup follows equation (7.2): 
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In our case, as the pressure buildup deflects both the DT shell and the plastic shell, 

we need to apply equation (7.2) simultaneously for the DT and the plastic shell. Note 
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that the pressure in the liquid due to the two deflections have to be equal, while the 

volume changes have to be added. 
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The right hand side of equation (7.3) is a constant, depending only on the material 

properties of DT and plastic, which can be found in Souers [16] for DT and material 

properties handbook for the plastic [26]. In the following equations, the right hand side 

of equation (7.3) is referred to as κ . 
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Using equation (7.2) again, this leads to a pressure buildup following equation 

(7.5): 
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Two different values for the Young’s modulus of solid DT were found in the 

literature [16], [1], differing by an order of magnitude. It was decided to use them in 

computing upper and lower values for the κ constant. Applying the numbers, we get 

1+κ
κ = 0.683998 or 0.95584, using the high and low values of the DT Young’s 

modulus, respectively.  
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κ is only a ratio of various geometric and material properties of the DT and the 

plastic shell. Its value would also be affected by parameters such as the thickness of 

the plastic shell and the choice of materials for the shell. The geometric parameters 

used in the target in this analysis are based on those used by Christiansen [1] (see table 

7.1). 

 

Table 7.1: the geometric parameters and material properties used in the pressure 
buildup computations are listed here.  

 

 Inner 
Radius 

Outer 
Radius 

Thickness of 
the shell 

Young’s 
Modulus 

Poisson 
ratio 

DT shell 1.600 mm 2.000 mm 0.400 mm 40 MPa 
400 MPa 0.325 

Plastic 
shell 2.000mm 2.002 mm 0.002 mm 3.3 GPa 0.300 

 

The analysis will assume that the pressure in the DT at the moment of injection (no 

melt layer present) is 22 000 Pa [16]. Following the thermodynamics of the layering 

process (solidification of the DT inside the plastic shell) [5], [24] a pressure close to 

the triple point pressure needs to be present in the target. Once the target is layered, 

there is no mass flux through the plastic shell and out of the target, demanding that the 

pressure remains at 22 kPa. The growth in melt layer will add to the 22 kPa according 

to equation (7.5).  

Figure 7.1 shows the pressure increase with increasing melt layer thickness for 

different κ values.  
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Pressure vs. meltlayer due to change in volume during solid to 
liquid phase change
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Figure 7.1: Depending on the stiffness (Young’s modulus) of the DT shell, the 
pressure in the target increases according to either of these two lines. Since the 
properties of the DT are highly temperature-dependent, and a large gradient 
characterizes the temperature distribution through out the DT shell, a more complex 
way of computing the real integrated value of the Young’s modulus could be applied.  

 

7.2 Results from the Bubble Growth Model 
 

 
As shown in the cylindrical case, increasing the liquid pressure has a large impact 

on the bubble growth in a superheated liquid close to the triple point pressure and 

temperature.  

The increase in pressure significantly delays the onset of bubble growth especially 

for heat fluxes that lead to a thick melt layer. The steady increase in liquid pressure 

due to the melt layer growth even after the onset of bubble growth also results in an 

increase of the temperature in the bubble. This can lead to a stagnation of bubble 
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growth or even collapse of the bubble if the saturation temperature corresponding to 

the pressure inside the bubble gets higher than the temperature of the surrounding 

liquid. The present code has been developed to simulate bubble growth and is not 

capable in its present form to also simulate stagnating or collapsing bubbles. This is 

because the code can only simulate bubble sizes of certain diameters (based on the 

mesh size);- it would be very challenging to keep track of the heat flux in and out of 

the bubble over several time steps in which the bubble doesn’t grow from one grid size 

to another in the code but yet physically changes size between the two values. The 

possibility of finding time steps long enough for the bubble size to equal the next grid-

assigned value can lead to time steps so long that the accuracy of the code becomes 

doubtful.   

It is possible and accurate though, to model the thermal and mechanical behavior 

inside the target up to the point where bubble nucleation occurs.  

Figure 7.2 shows the temperature profile for the outer three points in the domain 

along with the saturation temperature required to grow a 1.6 µm bubble.  
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Figure 7.2: In this figure, the temperature histories for the three outer most points 

of the spherical domain in the radial direction are plotted. The step wise increase of 
the melt layer (due to the discretized nature of numerical solutions) leads to a step 
wise increase in pressure in the liquid, and accordingly a step wise increase of 
superheat temperature required to grow the bubble. As we set the bubble growth 
criterion to when the second point radially inward from the outer radius (R=1.994mm) 
reaches a temperature higher than saturation temperature, the bubbles would start 
growing at the intersection of the light blue line with the step wise growing saturation 
temperature lines. Bubbles would grow in the plotted case at about 50 ms assuming a 
lower value for the DT Young’s modulus, and at 58 ms assuming DT to have a high 
E-value.   
 

As we let the code run to simulate bubble nucleation and growth it returns a very 

fast growth of bubbles (similar to the isobaric cases of the previous chapter) until 

about eight microns in diameter. After that the heat flowing into the bubble on one 

side is slightly smaller than the heat flowing out on the other, leading to a stagnation 

of bubble growth. Meanwhile, as the heating continues, and the melt layer continues 

growing, the temperature in the bubble also increases further. At some point, the 
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temperature in the bubble gets higher than the temperature of the surrounding liquid. 

At that time, physics considerations dictate a flow of heat from the bubble to the 

liquid, condensing the DT again, leading to a collapse of the bubble. The code cannot 

simulate this result as it is increasing the time step looking for an equilibrium between 

the heat flowing in and the heat required to grow the bubble. Instead of equilibrating 

the heat fluxes for a bubble collapse, the code returns the maximum allowed time step 

without convergence as figure 7.3 indicates. Thus, this could be considered as the 

threshold for bubble collapse. 

Bubble Growth for Spherical Geometry in the IFE Target Case
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Figure 7.3: Once the superheat temperature in the liquid matches or exceeds the 
temperature in the bubble, the bubble starts growing. After a short time, in which the 
bubble grows to a diameter of about 8 µm, the fast growth comes to a stop. While in 
the real case, the bubble is expected to collapse, the code returns a large value for the 
time step, which we know to be unreasonable. If the collapse of the bubble is of 
further interest, the code needs to be modified for this scenario. 
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In order to fulfill the symmetry and smoothness requirements of a direct drive 

target, it seems reasonable to assume that bubble nucleation should be avoided. 

7.3 Conclusions 
 

It might not be a fully satisfying result that we cannot model the exact behavior of 

the bubble in the target case since the code cannot model a collapsing bubble. But we 

can focus on the valuable results from this study: according to the reasoning and 

computations presented in this work, we are able to lift the conservative restriction of 

triple point temperature as the maximum allowable temperature. Assuming that a 

liquid layer around the target does not violate the target physics symmetry 

requirements we showed that it is possible to temporarily separate the onset of a melt 

layer growth from the onset of bubble growth. Figure 7.4 shows the impact of this 

conclusion on the target and chamber design work.  

 



 

 

78

 

 

Figure 7.4: Allowing for a solid to liquid phase change, but not allowing for 
bubble growth (assuming target physics requirements preclude bubble formation) 
provides a larger design margin, which can be used to either allow a higher heat flux 
onto the target, or longer target survival time.  

 
We expect the nucleus size in the actual target case to be bound between the two 

values plotted (0.4 and 1.6 µm), but future work should focus on a better estimate that 

the one elaborated in chapter 3.  

Obviously, by shifting the determining factor for target survival from a maximum 

temperature limited to the triple point temperature to phase change (melting) but 

without bubble growth for the estimated 3He nucleus sizes, the maximum allowable 

heat flux for a fixed time is raised by a factor of around three. Likewise, the survival 

time for a certain heat flux can be raised by a factor of five. Furthermore, extrapolating 

from the analysis result, it can be speculated, that if we allow for bubbles to grow and 

collapse, a self healing effect could turn into action which guarantees target survival as 
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long as the DT shell can handle the liquid pressure. However, the code cannot model 

bubble collapse in its current form and this would need to be verified by further 

modeling and, if so confirmed, ultimately by experiments. 
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8. Conclusion 
 

Previous research on the thermo-mechanical response of direct drive inertial fusion 

energy targets was limited because of its one dimensionality. In order to relax the 

conservative restriction that the target’s maximum outer temperature, while exposed to 

heat flux during injection, had to be below TP temperature, further analysis was 

required to model all three different phases of the DT fuel which are expected to be 

present as the triple point gets passed. 

First, the heat flux for different chamber designs needed to be quantified. These 

chamber configurations included the absence of any protective gas, such that the only 

convective heat flux on the target would be due to helium, deuterium and tritium 

residuals at very low pressures. Depending on the gas species, the convective heat 

transfer ranged between 0.5 - 0.8 2cm
W  and 4.5 - 6.5 2cm

W  for 1000 K and 4000 K gas 

temperature, respectively. Adding the radiative heat flux of estimated 0.2 -1.2  2cm
W

 

depending on the wall temperature, bounds the expected heat flux on a IFE target between 0.7 

and 7.7 2cm
W

.  

Since the liquid to vapor phase change is characterized by bubble nucleation and 

growth, we focused our attention to heterogeneous bubble nucleation. Assuming that a 

nucleus of a certain radius has to be present for a bubble to nucleate within a 

superheated liquid, we demonstrated the possibility of such nuclei to be present in the 

DT liquid phase due to tritium decay into 3He and its diffusion into clusters and nuclei. 
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Assuming a layering time of a few hours, these nuclei could be big enough to serve as 

nucleation sites for bubble growth in superheated liquid. Depending on the number 

density of these clusters and the time between layering and heating, we estimated the 

3He nuclei to reach a radius of 0.4 microns and 1.6 microns for the 4 hrs and 18 hrs 

waiting time cases.  

Following these considerations a bubble nucleation model was created for both 

hollow cylindrical and hollow spherical geometry. After testing the models on simple 

problems applying boundary conditions for which analytical solutions are available, 

the scenarios of heating experiments at LANL (cylinder) as well as the IFE target case 

(sphere) were simulated.  

While DT - heating experiments at LANL showed bubble nucleation and growth, 

the exact circumstances under which phase changes occur could not completely be 

determined. This work identifies liquid pressure, nucleus size and initial temperature 

as relevant parameters in describing the phase changes and the times at which these 

phase changes occur in a heating experiment. The observations from LANL could be 

reproduced numerically with satisfying accuracy. Main results included the forecast of 

a deep penetration of the bubble into the solid layer as the bubble grows faster than the 

melt layer. Meanwhile, a significant amount of superheat (around 1K) is required for 

bubble nucleation to occur, which clearly separates the onset time of solid to liquid 

phase change from the onset of bubble nucleation (around 20ms for 18K initial target 

temperature). Increasing the system pressure and decreasing the nucleus radius 

separates the onset time of the phase changes even further, as a higher superheat 

temperature will be required for bubble nucleation.  
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Because of the volume expansion during solid to liquid phase change and the 

presence of a plastic shell containing the DT fuel in the target case this work predicts a 

pressure increase within the target as the melt layer grows. This increase in pressure 

results in a time - delay of the onset of bubble nucleation. Furthermore, the model 

predicts a collapse of the bubble soon after its nucleation, but could not simulate this 

collapse.  

The main result of the thermomechanical analysis of the target is that a solid to 

liquid phase change can clearly by separated from bubble nucleation. Assuming that a 

melt layer does not violate the smoothness restrictions imposed by implosion physics 

considerations, the time delay between the melt layer growth and the onset of bubble 

nucleation lifts the maximum allowable temperature restriction of TP imposed by the 

previous model. Allowing a higher outside temperature and a liquid layer around the 

target allows for either a higher heat flux onto the target or provide longer survival 

times for a given heat flux.  
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APPENDIX A 

The effects of Cryocontaminants on the Target 
Reflectivity 

 
A major part of the heat flux acting on the target during injection results from 

radiation from the walls, which are estimated to have an average temperature of 700 to 
1000 K. In order to reduce this heat flux, it has been proposed [3] to coat the target 
with a thin layer of highly reflective metal like gold or palladium. The reflectivity of 
the coated target has been previously analyzed using a computer model based on the 
Fresnel approximation written by T.K. Mau and Zoran Dragojlovic at the University 
of California, San Diego [19]. Previous target survival studies have been based on the 
results from that numerical simulation, which shows an estimated reflectivity between 
94 to 96%.  

In this study, the effect of cryocontaminants has been taken into consideration. The 
target temperature is low enough fro impurity gases (such as H2O or CO2) to freeze on 
the surface prior to injection. Estimates [7] predict a thickness of 0.8 micron. Using 
the reflectivity data for water and carbon dioxide from [27], [28], the results from the 
Fresnel code show a huge drop in reflectivity as water freezes on the surface, whereas 
the reflectivity of the gold layer stays almost unchanged as a CO2 layer builds up 
(Figure A.1) 
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Figure A.1 The reflectivity of a 100 micron Au layer and cryodeposits of water 
and carbon dioxide is plotted. Clearly, the reflectivity of the target coating drops 
significantly as the water layer increases. A layer of frozen carbon dioxide hardly 
affects the overall reflectivity.  
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APPENDIX B 

Minimum Allowable Injection Velocities 
 

The possibility of lowering the injection velocity while accommodating the 
assumed target survival requirement was assessed. For the two gas temperatures of 
1000K and 4000K and chamber pressures of 0.5 to 10 mTorr the DS2V software [4] 
was used to find the convective heat load values presented in table B.1. 
 
Table B.1: The heat load onto the target imposed by a Deuterium background gas is 
determined using the DS2V software for different pressures and temperatures. 
 

Heat Load due to Deuterium Protective Gas in the Chamber ( 2cm
W ) 

4000K 1000K PRESSURE 
At ST=300K 

(mTorr) 400m/s 100m/s 400m/s 100m/s 

0.5 0.34 0.31 0.048 0.038 
1.0 0.625 0.600 0.095 0.075 
5 3.53 3.20 0.5 0.33 
10 6.5 6.0 1.0 0.75 

 
Assuming a chamber gas pressure of 1.0 mTorr  at ST (green shaded values) and a 

wall radiation heat flux of 0.2 2cm
W (based on 96% reflectivity and 1000K wall 

temperature), and using the one dimensional thermo-mechanical model [1] in an 
iterative scheme, parametric analyses were done, whose results are summarized in 
table B.2 and figure B.1 based on DT reaching the triple point as a survival 
requirement. The flight times are computed based on a chamber radius of 6.5 m.  
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Table B.2: Assuming a chamber pressure of 1 mTorr at ST and considering radiative 
and convective heat fluxes, the following initial temperatures are determined by 
numerical simulation. As a limiting criterion for target survival a maximum DT-
temperature of 19.79 K is used.  
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Figure B.1: The initial injection temperature is plotted as a function of the injection 
velocity for DT to reach its triple point (19.79K) in a chamber with D (1 mTorr at ST) 
at 1000K and 4000K, respectively and a wall temperature of 1000K. Clearly, the 
injection temperature must be lower for lower injection velocities.  
 

Temperature 
(K) 

Injection Velocity 
m/s 

heat flux 
W/cm^2 

Flight time 
s 

16 25 0.275 0.26
18.2  100 0.28 0.065
18.7 200 0.285 0.0325

1000 K 
Deuterium 
Background 
Gas 

19.03 400 0.29 0.01625
Temperature 
(K) 

Injection Velocity 
m/s 

heat flux 
W/cm^2 

Flight time  
s 

12 54 0.8 0.26
14.7 100 0.805 0.065
16.6 200 0.812 0.0325

4000 K 
Deuterium 
Background 
Gas 

17.5 400 0.82 0.01625
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APPENDIX C 

Parametric Study on Larger Target 
 

The exact designs of the different components of the IFE power plant are not 
determined yet. We are able to predict the target thermo-mechanical behavior for 
different target geometries, different chamber sizes, protective gas pressures, chamber 
wall temperatures etc. It is obvious, that all the uncertainties presented about bubble 
nucleation and growth, liquid pressure buildup and temperature distribution around the 
bubble become irrelevant, if the target reaches the center of the chamber with a 
maximum temperature below the triple point. For a different target geometry than the 
one assumed so far (figure C.1), the relations between heat flux, initial temperature 
and final maximum temperature have been analyzed using the previous model [1].  
 
 

Injection Velocity 100m/s 
Chamber Radius 10.5 m 
Wall Temperature 1000K 
Target Reflectivity 96% 
Heat Flux 0.5 W/cm2 

 
 

Figure C.1: a larger radius and thicker layers 
have been proposed as a new target design 
to be analyzed for different heat fluxes and 
initial target temperatures. 
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Figure C-2: The temperature profiles for the target with changed geometry have been 
plotted every ten milliseconds. The incoming heat flux was 0.5 W/cm2. For an initial 
temperature of 17.3 K, we observe a temperature of 21.5 K at the outer surface, which 
corresponds to a superheat of 1.7 K.  
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Temperature profiles for IFE target of changed geometry 
(T initial = 17.3K and 16.0K)

Total time 0.0105 s. Different heat fluxes required to reach TP(19.79K)
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Figure C.3: We computed the maximum allowable heat flux for the two cases with 
initial target temperatures of 17.3 and 16 K, respectively, based on DT reaching its 
triple point. The resulting heat fluxes are low, allowing only for a low density of 
chamber constituents during injection.  
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APPENDIX D 

3-D Model Setup 
 

Since the goal of this study was to model a 3-d spherical bubble off centered in a 
spherical domain, the possibility of a 3 dimensional code was analyzed. Similar to the 
presented 2-D case, the heat diffusion equation has been discretized as a first step in 
the setup of the code. The 3- dimensional spherical heat diffusion equation with 
constant coefficients reads: 
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In discretized form applied on a uniform spaced grid, equation D-1 becomes: 
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The resulting matrix has a checkerboard structure similar to the 2-D case, with the 

only difference of being heptadiagonal (seven entries on each line, rather than five). 
The proposed Gauss Red Black algorithm as well as the multi grid algorithm discussed 
in Appendix E can be applied to this problem, solving it quickly and efficiently. The 
computational expense to solve a problem of this size seemed too large as to 
implement this system in code. If several adjacent bubble are to be analyzed, a 3-d 
code would become necessary, while a single bubble can be exactly modeled using the 
symmetry in the ϕ - direction.  
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APPENDIX E 

The Multigrid Algorithm 
 

The general methodology behind solving the penta-diagonal system at hand (as 
any two dimensional system will result in), is chosen to be the Gauss Red Black 
algorithm.  This special case of a splitting method uses an iterative scheme that 
converges into the exact solution at each time step up to machine precision when 
enough iterations are performed. Gauss Red Black converges faster than other 
splitting methods leveraging the checkerboard structure of the problem. It lies in the 
nature of the algorithm that errors oscillating largely over the domain will only 
converge very slowly, while fast oscillating errors get resolved quickly [21].  

In order to shorten the computational time, the multigrid algorithm has been 
considered to solve this problem. Press et alt. have shown a faster convergence, if the 
grid spacing of the problem is altered in the search for a converging solution. Hereby 
the linear elliptic operator describing the system is applied on the grid to smoothen the 
quickly oscillating errors in the domain. After that, the operator is applied on every 
second grid point only, and smoothened, now only using half of the grid points. This 
scheme is used until the operator is only applied to a four by four grid describing the 
domain. Once this system is solved, we use a step wise linear interpolation scheme to 
assign values to the whole domain again.  

The details of how the mechanism of the multi grid algorithm can be researched 
from reference [22].   

This faster converging algorithm has been implemented in the problem at hand, 
the code can be found in the addenda.   

A measure to compare the Gauss Seidel and the multi-grid method is how much 
the maximum error changes with each iteration. While Gauss Seidel improves by a 
factor of 1.1 – 1.3, the multi-grid algorithm gives an improvement factor of 10-30 per 
iteration. 

Although the multi-grid algorithm proves to be more powerful than the Gauss 
Seidel method used in the code, it has not fully been implemented in the code for the 
following reasons: 

- The multi-grid algorithm fails if the coefficients don’t vary smoothly over 
the domain. Both when we model the solid – liquid phase change as well 
as bubble nucleation, we don’t have smoothly varying parameters any 
more. 

- By using the 2- D code iteratively guessing different time steps, an exact 
solution is not required to get to a better guess for the next iteration. Even 
a few (100 to 150) Gauss Seidel Iterations give us a good idea whether the 
guess for the time step was good or not. As the guess for the time step gets 
better and better, eventually Gauss Seidel delivers a converged solution 
before getting to the next time step. 

- Nevertheless the algorithm was implemented for a uniform spaced grid 
and constant coefficients, but it remains an academic exercise.  



  

program test_poisson_mg 
! A 2D Poisson solver on uniform mesh using Multigrid and 
Red/Black Gauss-Seidel 
! By Kurt Boehm after an idea from Thomas Bewley. 
 
integer    :: ii, jj, smooth, main, time 
real*8, dimension(:,:,:), allocatable :: T_save 
real*8, dimension(:,:), allocatable :: T,Tp 
real*8     :: e, o 
 
     include 'header' 
 
! Define "offset" and "max" grid variables 
     g%ro=2; g%rm=g%nr+1; 
     g%to=2; g%tm=g%nt+2; 
 
     allocate(T(g%rm,g%tm) , Tp(g%rm,g%tm)); T=0.0; Tp=0.0 
     allocate(T_save(timesteps,g%rm,g%tm)) ; T_save=0.0 
 
     DO jj=1,g%tm                 ! set the initial conditions 
     DO ii=1,g%rm 
        Tp(ii,jj)=Tinit; 
        T(ii,jj)=Tinit; 
     END DO 
     END DO 
      
     DO time=1,timesteps 
     
     CALL max_error(T,Tp,g,g%rm,g%tm,e)     
 
     DO smooth=1,n1 
 
        CALL poisson_rb(T,Tp,g,g%rm,g%tm)  
 
     END DO 
 

    DO  main=1,150 
       o=e;  
       CALL poisson_mg(T,Tp,g,g%rm,g%tm,n2,n3);  
       CALL max_error(T,Tp,g,g%rm,g%tm,e); 
       print(*,*),'Iteration =',main, 'error =',e, 'factor =',o/e 
       if (o/e==1 .or. e.lt.1E-12) then  
       print(*,*),'Converged', e, time 
       GOTO 10 
    end if 
 
    END DO 
       
10   Tp=T; 
    DO ii=1,g%rm 
       DO jj=1,g%tm 
           T_save(time,ii,jj)=T(ii,jj); 
       END DO  
    END DO 
 
    open(7,FILE='output.txt') 
    write(7,*) T_save(time,:,:) 
 
    END DO 
 
    close(7) 
 
    print(*,*), 'last profile = ', T(:,3) 
 
    deallocate(T,Tp,T_save) 
 
end program test_poisson_mg 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 
subroutine enforce_bcs_fine(T,Tp,g,grm,gtm) 
 
real*8   :: temp3 
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real*8, dimension(grm,gtm) :: T, Tp 
integer  :: jj,ii 
 
include 'header' 
 
! Enforce the Neumann and periodic boundary conditions 
  
!_____________Neuman BCS in the inner cylinder__________ 
 
  DO  jj=1,g%tm 
    T(1,jj)=T(2,jj); 
  END DO 
 
!___________constant heat flux at the boundary_______________ 
 
  delta_r=(Rad-Rad_inner)/(g%nr-1); 
  temp3=Rad_inner/delta_r+g%rm; 
 
   DO jj=1,g%tm 
    T(grm,jj)=q_in*delta_r*(2.0*temp3-1)/(2.0*0.3*temp3)+ & 
        (temp3-1)*T(grm-1,jj)/(temp3); 
   END DO 
 
 
!_______ periodic boundary conditions in theta______________ 
 
   DO ii=2,g%rm-1 
 
   T(ii,1)=T(ii,g%tm-1);  
   T(ii,g%tm)=T(ii,2); 
 
   END DO 
 
 end subroutine enforce_bcs_fine 
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

subroutine enforce_bcs_coarse(T,Tp,g,grm,gtm) 
 
integer  :: grm, gtm 
real*8, dimension(grm,gtm) :: T, Tp 
integer  :: jj,ii 
 
! Enforce the Neumann and periodic boundary conditions 
 !________Neuman BCS in the inner and outer cylinder____________ 
 
  DO  jj=1,gtm 
    T(1,jj)   = T(2,jj); 
    T(grm,jj) = T(grm-1,jj); 
  END DO 
 
!_____________ periodic boundary conditions in 
theta________________ 
 
   DO ii=2,grm-1 
 
   T(ii,1)=T(ii,gtm-1);  
   T(ii,gtm)=T(ii,2); 
 
   END DO 
 
 end subroutine enforce_bcs_coarse 
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
subroutine poisson_rb(T,Tp,g,grm,gtm) 
 
!% Apply Red/Black Gauss-Seidel smoothing, with L derived from the 
Poisson equation 
 
integer  :: jj, ii, rb, m 
real*8   :: temp3, norm, temp4, temp5, temp6 
real*8, dimension(grm,gtm) :: T, Tp 
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include 'header' 
 
delta_r=(Rad-Rad_inner)/(grm-2); 
delta_t=pi/(16.0*(gtm-3)); 
 
temp1=alpha*delta_time*((delta_r)**(-2)); 
 
DO rb=0,1 
  DO ii=2,g%rm-1       ! % update "red" points first, then "black" 
points. 
 
     m=2+mod(ii+rb+g%ro+g%to,2); 
 
     temp3 = Rad_inner/delta_r+ii-1; 
     norm=1.0/(2.0+2.0/((temp3*delta_t)**2)+1.0/temp1); 
 
     DO jj=m,(g%tm-1),2 
 
     T(ii,jj)=norm*((T(ii,jj+1)+T(ii,jj-1))*((temp3*delta_t)**(-2))+& 
         T(ii+1,jj)*(1.0+1.0/(2.0*temp3))+T(ii-1,jj)*(1.0-
1.0/(2.0*temp3))+& 
         (Tp(ii,jj)/temp1)); 
 
    END DO 
 
    IF (grm == fine_grid) THEN 
       CALL enforce_bcs_fine(T,Tp,g,g%rm,g%tm);  
    ELSE  
       CALL enforce_bcs_coarse(T,Tp,g,g%rm,g%tm); 
    END IF 
  END DO 
END DO 
end subroutine poisson_rb 
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
subroutine max_error(T,Tp,g,grm,gtm,e) 

 
real*8   :: temp3, e 
real*8, dimension(grm,gtm) :: T, Tp 
integer  :: jj, ii 
 
include 'header' 
 
delta_r=(Rad-Rad_inner)/(g%nr-1); 
delta_t=pi/(16.0*(g%nt-1)); 
temp1=(alpha*delta_time)/(delta_r**2);  
 
e=0; 
 
  DO ii=2,g%nr 
    DO jj=2,g%nt 
         
        temp3 = Rad_inner/delta_r+ii-1; 
 
       e=max(e,abs(Tp(ii,jj)-T(ii,jj)-temp1*(& 
          T(ii,jj)*(2.0+2.0/((temp3*delta_t)**2))+& 
          T(ii+1,jj)*(-1.0-(1.0/(2.0*temp3)))+& 
          T(ii-1,jj)*(-1.0+(1.0/(2.0*temp3)))-& 
          (T(ii,jj+1)+T(ii,jj-1))*((temp3*delta_t)**(-2))))); 
 
    END DO 
  END DO 
 
END SUBROUTINE max_error 
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
recursive subroutine poisson_mg(Tf,Tpf,gf,gfrm,gftm,n2,n3) 
 
integer  :: jj, ii, gfrm, gftm, smooth, ic, jc 
         
real*8, dimension(gfrm,gftm)             :: Tf, Tpf 
real*8, dimension(:,:),allocatable     :: Tc, Tpc 
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include 'header' 
 
!% Apply Multigrid with Red/Black Gauss-Seidel smoothing to the 
Poisson eqn 
gc%nr=gf%nr*0.5;   
gc%nt=gf%nt*0.5; 
 
! % Define coarse grid 
gc%ro=2; gc%rm=gc%nr+1; 
gc%to=2; gc%tm=gc%nt+2; 
 
DO smooth=1,n2 
  CALL poisson_rb(Tf,Tpf,gf,gf%rm,gf%tm) 
END DO        ! % n2 iterations of rb smoothing 
 
allocate(Tc(gc%rm,gc%tm),Tpc(gc%rm,gc%tm)); Tc=0.0; Tpc=0.0 
 
DO ic=2,gc%rm-1           ! % Calculate residual and perform the 
restriction 
   DO jc=2,gc%tm-1        ! % (using direct injection) in a single step. 
 
      ii=2.0*(ic-gc%ro)+gf%ro; jj=2.0*(jc-gc%to)+gf%to;  
  
      delta_r=(Rad-Rad_inner)/(gf%nr-1); 
      delta_t=pi/(16.0*(gf%nt-1)); 
       
      temp1=(alpha*delta_time)/(delta_r**2);        
      temp3 = Rad_inner/delta_r+ii-1; 
  
      Tpc(ic,jc)=Tpf(ii,jj)-Tf(ii,jj)-temp1*(& 
          Tf(ii,jj)*(2.0+2.0/((temp3*delta_t)**2))+& 
          Tf(ii+1,jj)*(-1.0-(1.0/(2.0*temp3)))+& 
          Tf(ii-1,jj)*(-1.0+(1.0/(2.0*temp3)))-& 
          (Tf(ii,jj+1)+Tf(ii,jj-1))*((temp3*delta_t)**(-2)))                    

      Tc(ic,jc)=Tpc(ic,jc); 
   END DO 
END DO 
 
CALL enforce_bcs_coarse(Tc,Tpc,gc,gc%rm,gc%tm); 
IF (gc%nr > 3 .and. gc%nt > 3 .and. mod(gf%nr,4)==0 .and.& 
 mod(gf%nt,4)==0) THEN 
    CALL poisson_mg(Tc,Tpc,gc,gc%rm,gc%tm,n2,n3); 
ELSE 
    DO smooth=1,20; CALL poisson_rb(Tc,Tpc,gc,gc%rm,gc%tm);  
    END DO  !% Solve small system (almost exactly) 
END IF 
DO ic=2,gc%rm ! % Prolongation (bilinear interpolation) on the black int. 
pts 
   DO jc=2,gc%tm !% the next call to poisson_rb will take care of the red 
pts 
      ii=2.0*(ic-gc%ro)+gf%ro; jj=2.0*(jc-gc%to)+gf%to; 
      if (jj<=gf%tm) then 
         Tf(ii-1,jj)=Tf(ii-1,jj)+(Tc(ic-1,jc)+Tc(ic,jc))*0.5; end if 
      if (ii<=gf%rm) then 
         Tf(ii,jj-1)=Tf(ii,jj-1)+(Tc(ic,jc-1)+Tc(ic,jc))*0.5; end if 
   END DO 
END DO 
IF (gf%rm == fine_grid) THEN 
    CALL enforce_bcs_fine(Tf,Tpf,gf,gf%rm,gf%tm); 
ELSE  
    CALL enforce_bcs_coarse(Tf,Tpf,gf,gf%rm,gf%tm); 
END IF 
DO smooth=1,n3            ! % n3 iterations of smoothing 
    CALL poisson_rb(Tf,Tpf,gf,gf%rm,gf%tm);  
END DO 
 
deallocate (Tc,Tpc) 
END SUBROUTINE poisson_mg 
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APPENDIX F 

The Heat Conduction Code including Solid- Liquid 
Phase Change and Bubble Nucleation 

 
The following is a listing of the program and subroutines used in the model that 

was written in FORTRAN. The subroutines that returned the material properties are 
not shown due to their length and simplicity.  

Common variables are defined at the beginning of each program and subroutine, 
the user input is listed in the header for convenience, which is included into any 
subroutine as well.  
 
program test_poisson_mg 

- Define the grid 
- Calculate the bubble sizes that will be modeled using a certain grid 
- Define the factors that will be used to move the profile 
- Initialize the profile 
- Calculate the required superheat temperature 
- Call the 1-D heat diffusion code: CALL SUBROUTINE temp_profile 

o return the 1-D profile after one time step has passed 
o get the necessary material properties using SUBROUTINE 

(dtdensity, heatdt, conddt) 
o solve the tridiagonal system using SUBROUTINE thomas 

- Check whether superheat is reached at the outer edge of the domain 
- Move forward in time using the 1-D model, until superheat is reached 
- Read in the profile for the 2-D domain (still symmetrical) 
- ONSET OF THE BUBBLE GROWTH 
- Calculate the pressure in the bubble 
- Determine the temperature in the bubble 
- Determine the amount of heat required to grow a bubble of that size 
- Set the temperature in the bubble according to saturation temperature at 

the pressure 
- Guess a time step 
- CALL SUBROUTINE total_heat_calc: 

o Uses SUBROUTINE poisson_rb to perform a certain number of 
Gauss Red Black iterations.  

o After each iteration SUBROUTINE max_error is used to check 
how big the error is, between the exact solution and the solution at 
hand.  

o If that error is close to machine precision: 
o We use this temperature field to compute the heat flown into the 

target by: 
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o Computing the heat flux at all the points around the bubble using 
the profile after it converged and summing them up 

o Computing the heat flux into the bubble using the profile before it 
converged at each point around the bubble and summing them up 

o As the actual heat flux into the bubble we apply the initial and the 
final profile over half a time step respectively 

o Returns the heat that would have flown into the bubble using this 
time step 

- Get a better guess for the time step using bisection method. 
- Output on the screen: 

o Time step 
o Heat flown in  
o Heat necessary to grow the bubble 

- Adjust the profile to prepare for the next time step 
- Start the next time step 

 
 



  

Cylindrical Code for Inward bubble 
Growth 

 
 
!----*|--.---------.---------.---------.---------.---------.---------.-|------- 
! This file contains definitions of global parameters and global 
variables. 
!----*|--.---------.---------.---------.---------.---------.---------.-|------- 
        type grid; 
 integer  :: nr, nt, ro, to, rm, tm, rmi 
 end type grid 
 type(grid) :: g 
 real*8   :: Rad_inner, Rad, pi, T_super, Temp_in_bub 
 real*8   :: q_in, delta_time, delta_time_b, T_init, Cs, Cst 
 real*8   :: surf_tens, press_liquid, lat_heat, gas_const 
 integer  :: grm, gtm, timesteps, n1, n2, n3, bubble_steps 
 
!%%%%%%%%%%%%%%%% User input%%%%%%%%%%% 
  
 Cs = 0.9   ! stretching factor in radial direction 
 Cst = 2.0 ! stretching factor in theta direction 
 g%nr=100  ! Grid calculated to have (close to ) 
quadratic 
       g%nt=75              ! patches where we want to model the 
bubble 
 
       delta_time_o=1.000E-4;    !  size of time steps 
       Tinit=18.0;            ! initial temperature 
       n1=100;             ! # of rb iterations at various points 
       Rad=0.002;           ! outer radius of the DT shell 
       Rad_inner=0.001533; 
       q_in=-1.0E4;          ! incoming heat flux 
       pi=3.141592653589793 

       total_angle=pi/16   
 bubble_steps=55  ! number of bubble steps 
 surf_tens = 3.9E-3   ! surface tension of liquid DT (temp. dep) 
 press_liquid = 22000  
 lat_heat = 1350  ! latent heat of vaporization (temp. 
dep)  
 gas_const = 8.314 ! gas constant 
  
%%%%%%%% END OF USER INPUT %%%%%%%% 
 
program test_poisson_mg 
! A 2D Poisson solver on uniform mesh using Multigrid and Red/Black 
Gauss-Seidel 
! By Kurt Boehm, Rene Raffray and Thomas Bewley 
 
COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(80), 
delta_t(80), delta_tsq(80), ld1, ld2, ud1, ud2, T_sat 
 
integer    :: ii, jj, smooth, main, time, bubb_step, dummy, steps, bubble 
integer    :: diag1, diag2, radii 
 
real*8, dimension(:,:), allocatable :: T,Tp,T_temp 
real*8, dimension(:,:), allocatable :: e_rad_star, pro_fac 
 
real*8, dimension(101) :: profile, prev_profile 
real*8, dimension(:), allocatable   :: bubb_vol, equiv_rad 
 
real*8     :: e, o, total_heat_u,total_heat_l, Kf 
real*8     :: delta_time_upper, delta_time_lower 
real*8     :: interval, heat_upper, heat_lower, heat_in 
real*8     :: press_bubb, delta_moles, moles, pre_moles  
real*8     :: bubb_vol_1, bubb_vol_2, bubb_vol_3 
real*8     :: pro_factor1, pro_factor2 
real*8     :: e_rad_1, e_rad_2, e_rad_3 
real*8     :: e_rad_star1, e_rad_star2, melt_layer_thickness(1002) 
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     include 'header' 
 
! user iput done in the header file 
! Define "offset" and "max" grid variables 
g%ro=2; g%rm=g%nr+1; 
g%to=2; g%tm=g%nt+2; 
 
allocate(T(g%rm,g%tm) , Tp(g%rm,g%tm), T_temp(g%rm,g%tm)); 
 
!! define the variable for the moving profile 
steps = bubble_steps+21 
allocate(bubb_vol(steps) , equiv_rad(steps)); bubb_vol=0.0; 
equiv_rad=0.0 
allocate(e_rad_star(bubble_steps,20),pro_fac(bubble_steps,20));  
pro_fac=0.0; e_rad_star=0.0 
 
T=0.0; Tp=0.0; Profile=0.0; T_temp=0.0 
bubb_vol=0.0; bubb_vol_2=0.0; heat_in=0.0; equiv_rad=0.0; 
press_bubb=0.0; T_sat=0.0; 
delta_moles=0.0; moles=0.0; pre_moles=0.0 
 
!_______ _____set up the stretched grid_________________ 
 
DO ii=0,g%nr+1 
   R(ii)=Rad_inner+(TANH(Cs*((1.0*ii-
1.0)/g%nr))/TANH(Cs))*(Rad-Rad_inner) 
END DO  
 
DO ii=1,g%nr 
    delta_r(ii)=R(ii+1)-R(ii) 
    delta_rsq(ii)=0.5*(R(ii+1)-R(ii-1)) 
END DO 
 
DO jj=-1,g%nt+1 
   Theta(jj+1)=0.5*total_angle* (SINH(-
Cst+(2.0*Cst*(jj)/(g%nt+1)))/(SINH(Cst))) 

END DO 
 
DO jj=0,g%nt 
   delta_t(jj+1)=Theta(jj+1)-Theta(jj) 
   delta_tsq(jj+1)=0.5*(Theta(jj+1)-Theta(jj-1)) 
END DO 
 
! This section calculates the equivalent radii and the factors by which we  
! need to move the profile 
 
diag1 =  (g%nt+3.0)/2.0+g%nr    
diag2 = -(g%nt+3.0)/2.0+g%nr    
 
DO bubble = 1,steps 
   !! calculate all the bubble volumes    
   DO ii=1,g%nr 
      DO jj=1,g%nt 
         if(((ii+jj).ge.(diag1+1-bubble)).and.((ii+jj).le.(diag1)).and.& 
              ((ii-jj).ge.(diag2+1-bubble)).and.((ii-jj).le.(diag2)))then  
         
            bubb_vol(bubble)=bubb_vol(bubble)+& 
                 0.5*(R(ii)+R(ii+1))*delta_r(ii)*delta_t(jj) 
         end if 
      END DO 
   END DO 
   equiv_rad(bubble)= (bubb_vol(bubble)/pi)**0.5 
END DO 
 
DO bubble = 1,bubble_steps 
   DO radii = 1,20 
      e_rad_star(bubble,radii)=(equiv_rad(bubble)**2-& 
           (equiv_rad(bubble+1))**2+equiv_rad(bubble+1+radii)**2)**(0.5) 
   END DO 
   DO radii = 1,20 
      pro_fac(bubble,radii)=(e_rad_star(bubble,radii)-
equiv_rad(bubble+radii))/& 

98



  

           (equiv_rad(bubble+radii+1)-equiv_rad(bubble+radii)) 
   END DO 
END DO 
 
write(*,*),'Maximum Size Bubble:', equiv_rad(bubble_steps) 
write(*,*),'Minimum Size Bubble:', equiv_rad(1) 
write(*,*),'roundness of bubble = ',delta_r(100), R(100)*delta_t(39) 
 
 
 
! Initialize the profile with the initial temperature 
 
DO ii=1,g%rm 
   profile(ii)=Tinit 
   prev_profile(ii)=Tinit 
END DO 
 
!!! calculate pressure in minimum size bubble 
      press_bub = press_liquid + 2.0*surf_tens/equiv_rad(1) 
!!! calculate saturation temp. at int. pressure (by interpolation) 
      T_sat = 19.99+2.0*(press_bub-22000)/(47400-22000) !! 19.79       
      write(*,*),'T_sat = ', T_sat 
 
DO time=1,1000 
   call temp_profile(prev_profile,profile,g,g%rm) 
       
! Melt Layer Thickness Subroutine 
   IF (mod(time,10)==0)then 
      DO ii=1,g%rm 
         If (profile(ii) .ge. 19.99) then         
            melt_layer_thickness(time) = 0.002 - R(ii) 
           open(23,FILE='meltlayer.txt') 
            write(23,*) melt_layer_thickness(time), time*0.0001 
            goto 23 
         END IF 
      END DO 

   END IF 
23 continue 
 
   IF (profile(g%nr-2).gt.T_sat) THEN  
      GOTO 20 
   END IF 
END DO 
 
20 pause 
close(23) 
 
open(15,FILE='t_r.txt') 
write(15,*) time 
 
!__These are the initial conditions for the uniform superheat case_ 
 
DO jj=1,g%tm                 ! set the initial conditions 
   DO ii=1,g%rm 
      Tp(ii,jj)= profile(ii)  
      T(ii,jj)=  profile(ii)     !  Initial guess of the next time step 
    END DO 
 END DO 
 
bubb_step=0.0 
time = 0.0 
 
ud1 = (g%nt+3)/2+g%nr 
ud2 =-(g%nt+3)/2+g%nr  
 
DO time=time+1,time+bubble_steps !timesteps 
 
   ! check the heat flux boundary condition 
   call conddt(T(g%nr,12),Kf) 
   temp1=Kf*(T(g%nr+1,12)-T(g%nr,12))/delta_r(g%nr) 
   print(*,*),'heat flux =', temp1 
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      ld1= ud1-bubb_step;  
      ld2= ud2-bubb_step; 
 
!!! calculate pressure in bubble 
      press_bub = press_liquid + 2.0*surf_tens/equiv_rad(time) 
!!! calculate saturation temp. at int. pressure (by interpolation) 
      T_sat = 19.99+2.0*(press_bub-22000)/(47400-22000) !! 19.79 
       
      write(*,*),'T_sat = ', T_sat 
 
!!! save previous number of moles 
      pre_moles = moles 
!!! calculate moles 
      moles = (press_bub*bubb_vol(time))/(gas_const*T_sat) 
 
      delta_moles = moles - pre_moles 
!!! calculate heat in  
      heat_in = delta_moles*lat_heat 
 
      Do ii=1,g%nr                                                      
         Do jj=1,g%nt                                                   
            if(((ii+jj).ge.ld1).and.((ii+jj).le.ud1).and.& 
                 ((ii-jj).ge.ld2).and.((ii-jj).le.ud2))then  
! set the temperature in the bubble to saturation temperature at bubble 
pressure 
               Tp(ii,jj)= T_sat 
            end if             
         end do 
      end do 
 
!_________ ____initial guess for the time step 
delta_time_lower=1E-7 
 
if (time==1) then 
delta_time_upper=3E-3 
elseif (time>1 .and. time < 15) then 

delta_time_upper=1E-2 
elseif (time> 14.and. time < 25) then 
delta_time_upper=1E-2 
elseif (time> 24) then 
delta_time_upper=1E-2 
end if 
 
interval = delta_time_upper-delta_time_lower 
 
CALL 
total_heat_calc(T,Tp,g,g%rm,g%tm,delta_time_upper,total_heat_u,total_
heat_l,bubb_step,equiv_rad) 
heat_upper = total_heat_u 
 
CALL 
total_heat_calc(T,Tp,g,g%rm,g%tm,delta_time_lower,total_heat_u,total_
heat_l,bubb_step,equiv_rad) 
heat_lower = total_heat_u 
 
DO dummy=1,50 
   delta_time=(delta_time_upper+delta_time_lower)/2.0 
 
CALL 
total_heat_calc(T,Tp,g,g%rm,g%tm,delta_time,total_heat_u,total_heat_l,b
ubb_step,equiv_rad) 
 
IF (heat_in.gt.total_heat_u) THEN 
   delta_time_lower = delta_time 
   heat_lower = total_heat_u 
ELSE  
   delta_time_upper = delta_time 
   heat_upper = total_heat_u 
END IF 
 
interval=interval/2 
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IF (time.lt.20 .and.(abs(heat_in-total_heat_u) < 1E-9)) THEN 
   write(*,*), 'time_step found>>>>>>>>>>>>>>>>>>>>>>' 
   write(*,*), 'heat_in************', heat_in 
   write(*,*), 'total_heat_u*******', total_heat_u 
   write(*,*), 'delta_time*********', delta_time 
   write(*,*), 'equiv_rad(time)****', equiv_rad(time) 
   write(*,*), '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' 
   GOTO 35 
 
ELSEIF (time.ge.20 .and. (abs(heat_in-total_heat_u) < 1E-7)) THEN 
   write(*,*), 'time_step found>>>>>>>>>>>>>>>>>>>>>>' 
   write(*,*), 'heat_in************', heat_in 
   write(*,*), 'total_heat_u*******', total_heat_u 
   write(*,*), 'delta_time*********', delta_time 
   write(*,*), 'equiv_rad(time)****', equiv_rad(time) 
   write(*,*), '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>' 
   GOTO 35 
 
END IF 
   write(*,*), 'heat_in            ', heat_in 
   write(*,*), 'total_heat_u       ', total_heat_u 
   write(*,*), 'delta_time         ', delta_time 
   write(*,*), 'interval iteration ', dummy 
 
END DO 
 
35 open(7,FILE='output.txt') 
   write(7,*) T(:,:) 
 
   open(15,FILE='t_r.txt') 
   write(15,*) delta_time, equiv_rad(time) 
    
Tp=T 
T_temp=T 
 
!! here is where we have to move the profile out to prepare the next  

!! bubble step, we update the profile according to e_rad_star 
!! you can pull the corners out and update them out here: 
 
DO radii=1,20 
 
DO ii=1,g%nr  !!(g%nr-bubb_loc-2*bubb_step),g%nr 
   DO jj=1,g%nt 
       
      IF ((ii+jj)==(ld1-(1+radii)).and.(ii.lt.g%nr-0.5-0.5*bubb_step).and.& 
           ii.ge.(g%nr-bubb_step-(radii)))THEN 
         
Tp(ii,jj)=0.5*(T_temp(ii+1,jj)+T_temp(ii,jj+1))+pro_fac(time,radii)*& 
              (T_temp(ii,jj)-0.5*(T_temp(ii,jj+1)+T_temp(ii+1,jj))) 
 
      END IF 
 
      IF ((ii-jj)==(ld2-(1+radii)).AND.(ii.lt.g%nr-0.5-0.5*bubb_step).and.& 
           ii.ge.(g%nr-bubb_step-(radii)))then 
          
         Tp(ii,jj)=0.5*(T_temp(ii,jj-
1)+T_temp(ii+1,jj))+pro_fac(time,radii)*& 
              (T_temp(ii,jj)-0.5*(T_temp(ii,jj-1)+T_temp(ii+1,jj)))           
          
      END IF 
      IF (jj==((g%nt+3.0)/2.0).AND.(ii== g%nr-(bubb_step+1+radii))) 
THEN 
         Tp(ii,jj)=T_temp(ii+1,jj)+pro_fac(time,radii)*(T_temp(ii,jj)-
T_temp(ii+1,jj)) 
      END IF 
!!--------------differentiate whether odd or even bubb_step 
      IF (mod(bubb_step,2)==0)THEN  
!-------- even 
         IF   (ii == (g%nr-bubb_step*0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0+(1+0.5*bubb_step+radii))))THEN       
            Tp(ii,jj)=T_temp(ii,jj-1)+pro_fac(time,radii)*& 
                 (T_temp(ii,jj)-T_temp(ii,jj-1)) 
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         END IF 
         IF   (ii == (g%nr-bubb_step*0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0)-(1+0.5*bubb_step+radii)))THEN  
            Tp(ii,jj)=T_temp(ii,jj+1)+pro_fac(time,radii)*& 
                 (T_temp(ii,jj)-T_temp(ii,jj+1)) 
         END IF 
      ELSE 
!------- odd  
         IF   (ii == (g%nr-bubb_step*0.5+0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0)-(0.5+0.5*bubb_step+radii)))THEN  
            Tp(ii,jj)=T_temp(ii,jj-1)+pro_fac(time,radii)*(T_temp(ii,jj)-
T_temp(ii,jj-1)) 
         END IF 
         IF   (ii == (g%nr-bubb_step*0.5-0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0)-(0.5+0.5*bubb_step+radii)))THEN  
            Tp(ii,jj)=T_temp(ii,jj+1)+pro_fac(time,radii)*(T_temp(ii,jj)-
T_temp(ii,jj+1)) 
        END IF 
         IF   (ii == (g%nr-bubb_step*0.5+0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0)+(0.5+0.5*bubb_step+radii)))THEN  
            Tp(ii,jj)=T_temp(ii,jj-1)+pro_fac(time,radii)*(T_temp(ii,jj)-
T_temp(ii,jj-1)) 
         END IF 
         IF   (ii == (g%nr-bubb_step*0.5-0.5).AND.& 
              (jj == ((g%nt+3.0)/2.0)+(0.5+0.5*bubb_step+radii)))THEN  
            Tp(ii,jj)=T_temp(ii,jj+1)+pro_fac(time,radii)*(T_temp(ii,jj)-
T_temp(ii,jj+1)) 
         END IF 
      END IF 
   END DO 
END DO 
END DO 
 
bubb_step=bubb_step+1 
 
END DO 

close(15) 
close(7) 
close(16) 
deallocate(T,Tp) 
 
end program test_poisson_mg 
 
subroutine enforce_bcs(T,Tp,g,grm,gtm,delta_time) 
 
  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(80), 
delta_t(80), delta_tsq(80), ld1, ld2, ud1, ud2, T_sat 
 
  real*8   ::  Kf, kp, ro, Cpdf, temp2, norm 
  real*8, dimension(grm,gtm) :: T, Tp 
  integer  :: jj,ii 
 
  include 'header' 
 
! Enforce the Neumann and periodic boundary conditions 
!________Neuman BCS in the inner cylinder____________ 
  DO  jj=1,gtm 
     T(1,jj)=T(2,jj); 
  END DO 
!_____constant heat flux at the outer boundary___________ 
 
  DO jj=1,gtm 
 
     call conddt(T(g%rm-1,jj),Kf) 
     kp = Kf 
 
     call conddt(T(g%rm,jj),Kf) 
     call dtdensity(T(g%rm,jj),ro) 
     call heatdt(T(g%rm,jj),Cpdf)      
  
     temp2 = (2.0*delta_time*Kf)/(ro*Cpdf*(delta_r(g%rm-1)**2)) 
     norm = 1.0/(1.0+temp2) 
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     T(g%rm,jj)= norm*(Tp(g%rm,jj)& 
          -((2.0*delta_time*q_in)/(ro*Cpdf*delta_r(g%rm-1)*Kf))& 
          *(Kf+0.5*(Kf*delta_r(g%rm-1)/R(g%rm)))& 
          +T(g%rm-1,jj)*(temp2)) 
 
  END DO 
!________ periodic boundary conditions in theta_______ 
 
  DO ii=2,grm 
     T(ii,1)=T(ii,gtm-1);  
     T(ii,gtm)=T(ii,2); 
  END DO 
 
end subroutine enforce_bcs 
 
subroutine poisson_rb(T,Tp,g,grm,gtm,delta_time) 
 
  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(80), 
delta_t(80), delta_tsq(80), ld1, ld2, ud1, ud2, T_sat 
 
!% Apply Red/Black Gauss-Seidel smoothing, with L derived from 
the Poisson equation 
!% (normalized s.t. the diagonal elements of L are 1) on the grid g, to 
Lv=d. 
 
  real*8   :: temp1, norm, Kf, ki, kp, kn, ktp, ktn, ro, cpdf 
  real*8, dimension(grm,gtm) :: T, Tp 
  integer  :: jj, ii, rb, m 
 
  include 'header' 
 
  DO rb=0,1 
     DO ii=2,g%rm-1       ! % update "red" points first, then "black" 
points. 
 

        m=2+mod(ii+rb+g%ro+g%to,2); 
        
        DO jj=m,(g%tm-1),2 
 
            if(((ii+jj).ge.ld1).and.((ii+jj).lt.ud1).and.& 
                 ((ii-jj).ge.ld2).and.((ii-jj).lt.ud2))then  
 
               T(ii,jj)=T_sat 
               else 
           call conddt(T(ii,jj),Kf) 
           ki  =  Kf 
           call conddt(T(ii-1,jj),Kf) 
           kp  =  Kf 
           call conddt(T(ii+1,jj),Kf) 
           kn  =  Kf 
           call conddt(T(ii,jj-1),Kf) 
           ktp =  Kf 
           call conddt(T(ii,jj+1),Kf) 
           ktn =  Kf 
 
           call dtdensity(T(ii,jj),ro) 
           call heatdt(T(ii,jj),Cpdf) 
 
           temp1 = delta_time/(ro*cpdf); 
 
           norm=1.0/((ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/delta_r(ii-1))& 
                +(ki/(delta_tsq(jj)*(R(ii)**2)))*(1.0/delta_t(jj-1)+& 
                1.0/delta_t(jj))+1.0/temp1); 
 
           T(ii,jj)=norm*( & 
                T(ii,jj+1)*((1.0/(R(ii)**2))*(ki/(delta_tsq(jj)*delta_t(jj))+& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)))+ & 
               T(ii,jj-1)*((1.0/(R(ii)**2))*(ki/(delta_tsq(jj)*delta_t(jj-1))-& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)))+ & 
                T(ii+1,jj)*((ki/delta_rsq(ii))*(1.0/delta_r(ii)+0.5/R(ii))+& 
                ((kn-kp)/(4.0*delta_rsq(ii)**2)))+ & 
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               T(ii-1,jj)*((-ki/delta_rsq(ii))*(-1.0/delta_r(ii-1)+0.5/R(ii))-& 
                ((kn-kp)/(4.0*delta_rsq(ii)**2)))+ & 
                Tp(ii,jj)/temp1); 
 
           END IF 
        END DO 
        CALL enforce_bcs(T,Tp,g,g%rm,g%tm,delta_time);  
     END DO 
  END DO 
end subroutine poisson_rb 
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
subroutine max_error(T,Tp,g,grm,gtm,e,delta_time) 
   
COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(80), 
delta_t(80), delta_tsq(80), ld1, ld2, ud1, ud2, T_sat  
 
  real*8   :: temp1, e, Kf, ki, kp, kn, ktp, ktn, ro, cpdf 
  real*8, dimension(grm,gtm) :: T, Tp 
  integer  :: jj, ii 
 
  include 'header' 
 
  e=0.0 
 
  DO ii=2,g%rm-2 
     DO jj=2,g%tm-2 
 
!!_we have to exclude the boundary of the bubble from the max error 
calc 
        if((ii+jj).ge.ld1.and.(ii+jj).lt.ud1.and.& 
             (ii-jj).ge.ld2.and.(ii-jj).lt.ud2) then  
           e=0.0 
        else  
           call conddt(T(ii,jj),Kf) 
           ki  =  Kf 

           call conddt(T(ii-1,jj),Kf) 
           kp  =  Kf 
           call conddt(T(ii+1,jj),Kf) 
           kn  =  Kf 
           call conddt(T(ii,jj-1),Kf) 
           ktp =  Kf 
           call conddt(T(ii,jj+1),Kf) 
           ktn =  Kf 
 
           call dtdensity(T(ii,jj),ro) 
           call heatdt(T(ii,jj),Cpdf) 
 
           temp1 = delta_time/(ro*Cpdf); 
 
           e=max(e,abs(Tp(ii,jj)-T(ii,jj)-temp1*( & 
             T(ii,jj)*((ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/delta_r(ii-1))+& 
                (ki/(delta_tsq(jj)*R(ii)**2))*& 
                (1.0/delta_t(jj)+1.0/delta_t(jj-1)))+ &                      
                T(ii,jj+1)*((1.0/(R(ii)**2))*(-ki/(delta_tsq(jj)*delta_t(jj))-& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)))+ & 
             T(ii,jj-1)*((1.0/(R(ii)**2))*(-ki/(delta_tsq(jj)*delta_t(jj-1))+& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)))+ &  
                T(ii+1,jj)*((-ki/delta_rsq(ii))*(1.0/delta_r(ii)+0.5/R(ii))& 
                -(kn-kp)/(4.0*delta_rsq(ii)**2))+ & 
                T(ii-1,jj)*((-ki/delta_rsq(ii))*(1.0/delta_r(ii-1)-0.5/R(ii))& 
               +(kn-kp)/(4.0*delta_rsq(ii)**2))))); 
        end if 
     END DO 
  END DO 
END SUBROUTINE max_error 
 
subroutine temp_profile(prev_profile,profile,g,grm) 
 
! A one D cylindrical model is developed here to model the heat transfer 
until  
! the superheat temperature required for a bubble to nucleate is reached 
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  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(76), 
delta_t(76), delta_tsq(76), T_sat 
 
  integer  :: ii 
  real*8   :: temp1, Kf, ki, kp, kn, ro, cpdf 
  real*8, dimension(101) :: profile, prev_profile,a,b,c 
 
  include 'header' 
   
  a=0.0;  b=0.0;  c=0.0 
 
call conddt(prev_profile(grm),Kf) 
temp1=Kf*(prev_profile(grm)-prev_profile(grm-1))/delta_r(grm-1) 
!print(*,*),'heat flux =', temp1 
   
  DO ii=2,grm-1 
 
     call conddt(profile(ii),Kf) 
     ki  =  Kf 
     call conddt(profile(ii-1),Kf) 
     kp  =  Kf 
     call conddt(profile(ii+1),Kf) 
     kn  =  Kf 
 
     call dtdensity(profile(ii),ro) 
     call heatdt(profile(ii),Cpdf) 
 
     temp1 = delta_time_o/(ro*cpdf); 
 
     a(ii)=temp1*((ki/delta_rsq(ii))*(0.5/R(ii)-1.0/delta_r(ii-1))& 
                +(kn-kp)/(4.0*delta_rsq(ii)**2)) 
 
     b(ii)=1+temp1*(ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/delta_r(ii-1)) 
 
     c(ii)=temp1*((-ki/delta_rsq(ii))*(1.0/delta_r(ii)+0.5/R(ii))& 

                -(kn-kp)/(4.0*delta_rsq(ii)**2)) 
 
  END DO 
 
! Boundary conditions zero gradient in the center 
  a(1)=0.0 
  b(1)=1.0 
  c(1)=-1.0 
  prev_profile(1)=0.0 
 
! and const. heat flux at the outer edge 
   call conddt(profile(grm),Kf) 
 
     a(grm)=-(2.0*delta_time_o*Kf)/(ro*Cpdf*delta_r(grm-1)**2) 
     b(grm)=1+(2.0*delta_time_o*Kf)/(ro*Cpdf*delta_r(grm-1)**2) 
     c(grm)=0.0 
 
     prev_profile(grm)= prev_profile(grm)& 
          -((2.0*delta_time_o*q_in)/(ro*Cpdf*delta_r(grm-1)*Kf))& 
          *(Kf+0.5*(Kf*delta_r(grm-1)/R(grm))) 
 
!__________________solve with thomas algorithm 
 
  CALL thomas(a,b,c,prev_profile,grm) 
 
  DO ii=1,grm 
     profile(ii)=prev_profile(ii) 
  END DO 
 
end subroutine temp_profile 
 
subroutine thomas(a,b,c,prev_profile,grm) 
 
  real*8, dimension(101) :: prev_profile,a,b,c 
  integer  :: jj,ii, grm 
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  DO ii=1,grm-1 
      
     a(ii+1)= -a(ii+1)/b(ii) 
     b(ii+1)= b(ii+1) + a(ii+1)*c(ii) 
     prev_profile(ii+1)= prev_profile(ii+1) + a(ii+1)*prev_profile(ii) 
 
  END DO 
 
  prev_profile(grm)=prev_profile(grm)/b(grm) 
 
  DO jj=grm-1,1,-1 
      
     prev_profile(jj)=(prev_profile(jj)-c(jj)*prev_profile(jj+1))/b(jj) 
 
  END DO 
   
end subroutine Thomas 
 
subroutine 
total_heat_calc(T,Tp,g,grm,gtm,delta_time,total_heat_u,total_heat_l,
bubb_step,equiv_rad) 
! this subroutine calcualtes the total heat transferred into the bubble  
! assuming a certain size time step (which is the input) 
 
  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(80), 
delta_t(80), delta_tsq(80), ld1, ld2, ud1, ud2, T_sat 
 
integer    :: ii, jj, smooth, bubb_step 
 
real*8, dimension(grm,gtm) :: T,Tp,heat, heat2 
real*8     :: e, o, total_heat_l, total_heat_u, Kf, equiv_rad, check 
 
include 'header' 
 
   DO smooth=1,n1 
      o=e; 

      CALL poisson_rb(T,Tp,g,g%rm,g%tm,delta_time);  
      CALL max_error(T,Tp,g,g%rm,g%tm,e,delta_time)      
      if (o/e==1 .or. e.lt.1E-13) then  
      write(*,*),'error = ', e, 'inter = ', smooth, 'timestep = ', 'bubble = ', 
bubb_step 
      write(*,*),'Converged___________________________________' 
        GOTO 10; 
      end if 
   END DO 
         
10 heat=0.0;heat2=0.0 
write(*,*), 'error = ',e  
 
ud1 = (g%nt+3)/2+g%nr 
ud2 =-(g%nt+3)/2+g%nr 
      ld1= ud1-bubb_step;  
      ld2= ud2-bubb_step; 
 
!_calculate the heat transfer into bubble from the slope on the edge__ 
 
   DO ii=1,g%nr+1 
      DO jj=1,g%nt 
!! along lower diagonal one -- cylindrical bubble of unit height 
         IF ((ii+jj)==((g%nt+3)/2+g%nr-bubb_step-1).AND.& 
              (ii.ge.g%nr-(bubb_step)).AND.(ii.lt.g%nr-0.5-
0.5*bubb_step))then 
            call conddt(T(ii,jj),Kf)  
 
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj)) +& 
                 ((T(ii,jj)-T(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj)))& 
                 /delta_r(ii)) 
         END IF 
 
!! along upper diagonal one -- 
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         IF ((ii+jj)==((g%nt+3)/2+g%nr+1).AND.(ii.gt. g%nr+0.5-
0.5*bubb_step)& 
              .AND.(ii.le.(g%nr)))then             
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj-1))*delta_r(ii-1))& 
                 /(R(ii)*delta_t(jj-1)) +& 
                 ((T(ii,jj)-T(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj-1)))& 
                 /delta_r(ii-1)) 
         END IF 
 
!! along lower diagonal two -- 
         IF ((ii-jj)==(-(g%nt+3)/2+g%nr-bubb_step-1).AND.& 
              (ii.ge.g%nr-(bubb_step)).AND.(ii.lt.g%nr-0.5-
0.5*bubb_step))then 
                call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1)) +& 
                 ((T(ii,jj)-T(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj-1)))& 
                 /delta_r(ii)) 
         END IF 
 
!! along upper diagonal two -- 
         IF ((ii-jj)==(-(g%nt+3)/2+g%nr+1).AND.& 
              (ii.gt.g%nr+0.5-0.5*bubb_step).AND.(ii.le.g%nr))then 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj+1))*delta_r(ii-1))& 
                 /(R(ii)*delta_t(jj)) +& 
                 ((T(ii,jj)-T(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj)))& 
                 /delta_r(ii-1)) 
         END IF 
 
! lower corner -- 

         IF ((jj)==((g%nt+3.0)/2.0).AND.(ii == g%nr-(bubb_step+1)))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj)))& 
                 /delta_r(ii)) 
         END IF 
 
! upper corner -- 
         IF (ii==g%nr+1.AND.(jj == (g%nt+3.0)/2.0))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj)))& 
                 /delta_r(ii-1)) 
         END IF 
!---------------------------------------------------------------------- 
         IF (mod(bubb_step,2)==0) THEN 
! -- even bubble steps 
! -- left corner 
         IF (ii ==(g%nr-bubb_step*0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0-(1+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
 
! right corner -- 
         IF (ii ==(g%nr-bubb_step*0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(1+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
 
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1)))             
         END IF 
      END IF 
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!____________________________________________ 
         IF (mod(bubb_step,2)==1) THEN 
! -- odd bubble steps 
! -- left corners 
         IF (ii ==(g%nr-bubb_step*0.5+0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0-(0.5+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
         IF (ii ==(g%nr-bubb_step*0.5-0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0-(0.5+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
 
! right corners -- 
         IF (ii ==(g%nr-bubb_step*0.5+0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(0.5+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1))) 
         END IF 
         IF (ii ==(g%nr-bubb_step*0.5-0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(0.5+bubb_step*0.5))))THEN 
            call conddt(T(ii,jj),Kf)  
 
            heat(ii,jj)=Kf*delta_time*(& 
                 ((T(ii,jj)-T(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1))) 
      END IF 
      END IF 

   END DO 
END DO 
 
!!!Calculate the heat flux assuming the final profile instead of the initial 
!_ _calculate the heat transfer into bubble from the slope on the edge 
 
   DO ii=1,g%nr+1 
      DO jj=1,g%nt 
 
!! along lower diagonal one -- cylindrical bubble of unit height 
         IF ((ii+jj)==((g%nt+3)/2+g%nr-bubb_step-1).AND.& 
              (ii.ge.g%nr-(bubb_step)).AND.(ii.lt.g%nr-0.5-
0.5*bubb_step))then 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj)) +& 
                 ((Tp(ii,jj)-Tp(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj)))& 
                 /delta_r(ii)) 
         END IF 
 
!! along upper diagonal one -- 
         IF ((ii+jj)==((g%nt+3)/2+g%nr+1).AND.(ii.gt. g%nr+0.5-
0.5*bubb_step)& 
              .AND.(ii.le.(g%nr)))then             
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj-1))*delta_r(ii-1))& 
                 /(R(ii)*delta_t(jj-1)) +& 
                 ((Tp(ii,jj)-Tp(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj-1)))& 
                 /delta_r(ii-1)) 
         END IF 
 
!! along lower diagonal two -- 
         IF ((ii-jj)==(-(g%nt+3)/2+g%nr-bubb_step-1).AND.& 
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              (ii.ge.g%nr-(bubb_step)).AND.(ii.lt.g%nr-0.5-
0.5*bubb_step))then             
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1)) +& 
                 ((Tp(ii,jj)-Tp(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj-
1)))& 
                 /delta_r(ii)) 
         END IF 
 
!! along upper diagonal two -- 
         IF ((ii-jj)==(-(g%nt+3)/2+g%nr+1).AND.& 
              (ii.gt.g%nr+0.5-0.5*bubb_step).AND.(ii.le.g%nr))then 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj+1))*delta_r(ii-1))& 
                 /(R(ii)*delta_t(jj)) +& 
                 ((Tp(ii,jj)-Tp(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj)))& 
                 /delta_r(ii-1)) 
         END IF 
 
! lower corner -- 
         IF ((jj)==((g%nt+3.0)/2.0).AND.(ii == g%nr-
(bubb_step+1)))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii+1,jj))*(0.5*(R(ii)+R(ii+1))*delta_t(jj)))& 
                 /delta_r(ii))            
         END IF 
 
! upper corner -- 
         IF (ii==g%nr+1.AND.(jj == (g%nt+3.0)/2.0))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii-1,jj))*(0.5*(R(ii)+R(ii-1))*delta_t(jj)))& 

                 /delta_r(ii-1)) 
         END IF 
!---------------------------------------------------------------------- 
         IF (mod(bubb_step,2)==0) THEN 
! -- even bubble steps 
! -- left corner 
         IF (ii ==(g%nr-bubb_step*0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0-(1+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
           heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
 
! right corner -- 
         IF (ii ==(g%nr-bubb_step*0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(1+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1))) 
         END IF 
      END IF 
         IF (mod(bubb_step,2)==1) THEN 
 
! -- odd bubble steps 
! -- left corners 
         IF (ii ==(g%nr-bubb_step*0.5+0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0-(0.5+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
 
         IF (ii ==(g%nr-bubb_step*0.5-0.5).AND.& 
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            (jj ==((g%nt+3.0)/2.0-(0.5+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj+1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj))) 
         END IF 
 
! right corners -- 
         IF (ii ==(g%nr-bubb_step*0.5+0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(0.5+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1))) 
         END IF 
 
         IF (ii ==(g%nr-bubb_step*0.5-0.5).AND.& 
            (jj ==((g%nt+3.0)/2.0+(0.5+bubb_step*0.5))))THEN 
            call conddt(Tp(ii,jj),Kf)  
            heat2(ii,jj)=Kf*delta_time*(& 
                 ((Tp(ii,jj)-Tp(ii,jj-1))*delta_r(ii))& 
                 /(R(ii)*delta_t(jj-1))) 
      END IF 
      END IF 
 
   END DO 
END DO 
 
   total_heat_u = sum(heat(:,:)) 
   total_heat_l = sum(heat2(:,:)) 
 
write(*,*),'total_heat_u',total_heat_u 
write(*,*),'total_heat_l',total_heat_l 
   total_heat_u = 0.5*total_heat_u+0.5*total_heat_l 
 
end subroutine total_heat_calc 
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Spherical Code for Inward Bubble 
Growth 

 
(Only significantly different parts) 

Adding the pressure increase due to melt 
layer thickness: 

 
(…)  
DO time=1,5000 
   call temp_profile(prev_profile,profile,g,g%rm) 
 
! Melt Layer Thickness Subroutine 
 
      DO ii=1,g%nr 
         If (profile(ii) .ge. 19.99) then 
       
            melt_layer_thickness(time) = 0.002 - R(ii) 
 
            open(23,FILE='meltlayer.txt') 
            write(23,*) melt_layer_thickness(time), 
press_liq_melt,time*0.0001 
 
            goto 25 
         END IF 
      END DO 
 
25 continue 
       
   IF (profile(g%nr-2).gt.T_sat) THEN  
      GOTO 20 

   END IF 
 
   volume_melt  = 4.0*pi*(0.002**3-(0.002-
melt_layer_thickness(time))**3)/3.0 
   moles_melt   = volume_melt * 44110 !could be more exact 
   delta_volume = 2.72*moles_melt*1E-6 
   d_vol_ovr_vol= delta_volume*3.0 / & 
        (4.0*pi*(0.002-melt_layer_thickness(time))**3) 
 
print(*,*),'time', time 
print(*,*),'melt layer thickness', melt_layer_thickness(time) 
 
    
!! include pressure buildup due to melt layer growth 
   press_liq_melt = press_liquid + 3142867 * d_vol_ovr_vol * 0.95589 
   press_bub = press_liq_melt + 2.0*surf_tens/equiv_rad(1) 
!!! calculate saturation temp. at int. pressure (by interpolation) 
   T_sat = 19.99+2.0*(press_bub-22000)/(47400-22000) !! 19.79 
 
print(*,*),'press_bubb', press_bub, press_liq_melt 
print(*,*),'T_sat', T_sat 
print(*,*),'T_out', profile(g%nr) 
 
open(6797, FILE='T_sat_out.txt') 
write(6797,*), 0.0001*time, T_sat, profile(g%nr-2), profile(g%nr-2), 
profile(g%nr) 
 
END DO 
(…) 

Spherical Equations: 
 
(…) 
!___ _constant heat flux at the outer boundary___________ 
  DO jj=1,gtm 
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     call conddt(T(g%rm-1,jj),Kf) 
     kp = Kf 
     call conddt(T(g%rm,jj),Kf) 
     call dtdensity(T(g%rm,jj),ro) 
     call heatdt(T(g%rm,jj),Cpdf)       
     temp2 = (2.0*delta_time*Kf)/(ro*Cpdf*(delta_r(g%rm-1)**2)) 
     norm = 1.0/(1.0+temp2) 
     T(g%rm,jj)=  norm*(Tp(g%rm,jj)& 
          -((2.0*delta_time*q_in)/(ro*Cpdf*delta_r(g%rm-1)*Kf))& 
          *(Kf+(Kf*delta_r(g%rm-1)/R(g%rm)))& 
          +T(g%rm-1,jj)*(temp2)) 
  END DO 
 
(…) 
 
subroutine poisson_rb(T,Tp,g,grm,gtm,delta_time) 
 
  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(77), 
delta_t(76), delta_tsq(76), ld1, ld2, ud1, ud2, T_sat 
 
!% Apply Red/Black Gauss-Seidel smoothing, with L derived from 
the Poisson equation 
!% (normalized s.t. the diagonal elements of L are 1) on the grid g, to 
Lv=d. 
 
  real*8   :: temp1, norm, Kf, ki, kp, kn, ktp, ktn, ro, cpdf 
  real*8, dimension(grm,gtm) :: T, Tp 
  integer  :: jj, ii, rb, m 
 
  include 'header' 
 
  DO rb=0,1 
     DO ii=2,g%rm-1       ! % update "red" points first, then "black" 
points. 
        m=2+mod(ii+rb+g%ro+g%to,2);        
        DO jj=m,(g%tm-1),2 

           if(((ii+jj).le.ud1).and.& 
                ((ii-jj).ge.ld2))then  
              T(ii,jj)=T_sat 
           else 
              call conddt(T(ii,jj),Kf) 
              ki  =  Kf 
              call conddt(T(ii-1,jj),Kf) 
              kp  =  Kf 
              call conddt(T(ii+1,jj),Kf) 
              kn  =  Kf 
              call conddt(T(ii,jj-1),Kf) 
              ktp =  Kf 
              call conddt(T(ii,jj+1),Kf) 
              ktn =  Kf 
              call dtdensity(T(ii,jj),ro) 
              call heatdt(T(ii,jj),Cpdf) 
              temp1 = delta_time/(ro*cpdf); 
           norm=1.0/((ki/delta_rsq(ii))*(1.0/delta_r(ii-1)+1.0/delta_r(ii))& 
                +(ki/(delta_tsq(jj)*(R(ii)**2)))*(1.0/delta_t(jj-1)+& 
                1.0/delta_t(jj))+1.0/temp1); 
           T(ii,jj)=norm*( & 
               T(ii,jj+1)*((1.0/(R(ii)**2))*(ki/(delta_tsq(jj)*delta_t(jj))+& 
                 (ktn-ktp)/(4.0*delta_tsq(jj)**2) & 
                 +ki/(2.0*tan(Theta(jj))*delta_tsq(jj))))+ & 
                T(ii,jj-1)*((1.0/(R(ii)**2))*(ki/(delta_tsq(jj)*delta_t(jj-1))-& 
                  (ktn-ktp)/(4.0*delta_tsq(jj)**2) & 
                  -ki/(2.0*tan(Theta(jj))*delta_tsq(jj))))+ & 
                T(ii+1,jj)*((ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/R(ii))+& 
                  ((kn-kp)/(4.0*delta_rsq(ii)**2)))+ & 
                T(ii-1,jj)*((ki/delta_rsq(ii))*(1.0/delta_r(ii-1)-1.0/R(ii))-& 
                  ((kn-kp)/(4.0*delta_rsq(ii)**2)))+ & 
                Tp(ii,jj)/temp1); 
 
           END IF 
        END DO 
        CALL enforce_bcs(T,Tp,g,g%rm,g%tm, delta_time);  
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     END DO 
  END DO 
 
end subroutine poisson_rb 
 
subroutine max_error(T,Tp,g,grm,gtm,e,delta_time) 
   
COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(77), 
delta_t(76), delta_tsq(76), ld1, ld2, ud1, ud2, T_sat  
 
  real*8   :: temp1, e, Kf, ki, kp, kn, ktp, ktn, ro, cpdf 
  real*8, dimension(grm,gtm) :: T, Tp 
  integer  :: jj, ii 
 
  include 'header' 
 
     e=0.0  
 
  DO ii=2,g%rm-1 
     DO jj=2,g%tm-1 
 
    !!_we have to exclude the boundary of the bubble from the max 
error calc 
        if(((ii+jj).le.ud1).and.& 
             ((ii-jj).ge.ld2))then       
          e=0.0 
        else            
           call conddt(T(ii,jj),Kf) 
           ki  =  Kf 
           call conddt(T(ii-1,jj),Kf) 
           kp  =  Kf 
           call conddt(T(ii+1,jj),Kf) 
           kn  =  Kf 
           call conddt(T(ii,jj-1),Kf) 
           ktp =  Kf 
           call conddt(T(ii,jj+1),Kf) 

           ktn =  Kf 
           call dtdensity(T(ii,jj),ro) 
           call heatdt(T(ii,jj),Cpdf) 
           temp1 = delta_time/(ro*Cpdf); 
 
           e=max(e,abs(Tp(ii,jj)-T(ii,jj)-temp1*( & 
                T(ii,jj)*((ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/delta_r(ii-1))+& 
                (ki/(delta_tsq(jj)*R(ii)**2))*& 
                (1.0/delta_t(jj)+1.0/delta_t(jj-1)))+ &                      
                T(ii,jj+1)*((1.0/(R(ii)**2))*(-ki/(delta_tsq(jj)*delta_t(jj))-& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)& 
                -ki/(2.0*tan(Theta(jj))*delta_tsq(jj))))+ & 
                T(ii,jj-1)*((1.0/(R(ii)**2))*(-ki/(delta_tsq(jj)*delta_t(jj-1))+& 
                (ktn-ktp)/(4.0*delta_tsq(jj)**2)& 
                +ki/(2.0*tan(Theta(jj))*delta_tsq(jj)))) + & 
                T(ii+1,jj)*((-ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/R(ii))& 
                -(kn-kp)/(4.0*delta_rsq(ii)**2)) + & 
                T(ii-1,jj)*((-ki/delta_rsq(ii))*(1.0/delta_r(ii-1)-1.0/R(ii))& 
                +(kn-kp)/(4.0*delta_rsq(ii)**2))))); 
            
        end if 
     END DO 
  END DO 
 
END SUBROUTINE max_error 
 
subroutine temp_profile(prev_profile,profile,g,grm) 
 
! A one D cylindrical model is developed here to model the heat transfer 
until  
! the superheat temperature required for a bubble to nucleate is reached 
 
  COMMON/GRID/ R(102), delta_r(102), delta_rsq(102), Theta(76), 
delta_t(76), delta_tsq(76), T_sat 
 
  integer  :: ii 
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  real*8   :: temp1, Kf, ki, kp, kn, ro, cpdf 
  real*8, dimension(101) :: profile, prev_profile,a,b,c 
 
  include 'header' 
   
  a=0.0;  b=0.0;  c=0.0 
 
call conddt(prev_profile(grm),Kf) 
temp1=Kf*(prev_profile(grm)-prev_profile(grm-1))/delta_r(grm-1) 
   
  DO ii=2,grm-1 
 
     call conddt(profile(ii),Kf) 
     ki  =  Kf 
     call conddt(profile(ii-1),Kf) 
     kp  =  Kf 
     call conddt(profile(ii+1),Kf) 
     kn  =  Kf 
     call dtdensity(profile(ii),ro) 
     call heatdt(profile(ii),Cpdf) 
     temp1 = delta_time_o/(ro*cpdf); 
     a(ii)=temp1*((ki/delta_rsq(ii))*(1.0/R(ii)-1.0/delta_r(ii-1))& 
                +(kn-kp)/(4.0*delta_rsq(ii)**2)) 
     b(ii)=1+temp1*(ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/delta_r(ii-1)) 
     c(ii)=temp1*((-ki/delta_rsq(ii))*(1.0/delta_r(ii)+1.0/R(ii))& 
                -(kn-kp)/(4.0*delta_rsq(ii)**2)) 
  END DO 
 
! Boundary conditions zero gradient in the center 
 
  a(1)=0.0 
  b(1)=1.0 
  c(1)=-1.0 
  prev_profile(1)=0.0 
! and const. heat flux at the outer edge 
  call conddt(profile(grm),Kf) 

 
  a(grm)=-(2.0*delta_time_o*Kf)/(ro*Cpdf*delta_r(grm-1)**2) 
  b(grm)=1+(2.0*delta_time_o*Kf)/(ro*Cpdf*delta_r(grm-1)**2) 
  c(grm)=0.0 
 
  prev_profile(grm)= prev_profile(grm)& 
       -((2.0*delta_time_o*q_in)/(ro*Cpdf*delta_r(grm-1)*Kf))& 
       *(Kf+(Kf*delta_r(grm-1)/R(grm) )) 
 
!__________________solve with thomas algorithm 
 
  CALL thomas(a,b,c,prev_profile,grm) 
  DO ii=1,grm 
     profile(ii)=prev_profile(ii) 
  END DO 
end subroutine temp_profile  

Heat flux into the bubble: 
 
!___calculate the heat transfer into bubble from the slope on the edge____ 
 
   DO ii=1,g%nr+1 
      DO jj=1,g%nt 
!! along upper diagonal one -- 
         IF ((ii+jj)==(2+g%nr+1).AND.(ii.gt. g%nr+0.5-
0.5*bubb_step).AND.           (ii.le. (g%nr)))then 
 ! Area when calculating  Qr 
            area_rad =  pi*((0.5*(R(ii)+R(ii-1)))**2)*& 
                 ((0.5*(Theta(jj)+Theta(jj+1)))**2-& 
                 (0.5*(Theta(jj)+Theta(jj-1)))**2)/delta_r(ii-1)  
 ! Area when calculating Qt 
            area_theta = pi*delta_r(ii)*(Theta(jj)+Theta(jj-1))/delta_t(jj-1) 
            call conddt(T(ii,jj),Kf)  
            heat(ii,jj)=Kf*delta_time*((T(ii,jj)-T(ii-1,jj))*area_rad & 
                 +(T(ii,jj)-T(ii,jj-1))*area_theta)             
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         END IF 
 
!! along lower diagonal two -- 
         IF ((ii-jj)==(g%nr-2-1-bubb_step).AND.& 
              (ii.ge.g%nr-bubb_step).AND.(ii.lt. g%nr-0.5-
0.5*bubb_step))then 
            area_rad =  pi*((0.5*(R(ii)+R(ii+1)))**2)*& 
                 ((0.5*(Theta(jj)+Theta(jj+1)))**2-& 
                 (0.5*(Theta(jj)+Theta(jj-1)))**2)/delta_r(ii)             
            area_theta = pi*delta_r(ii)*(Theta(jj)+Theta(jj-1))/delta_t(jj-1)            
            call conddt(T(ii,jj),Kf)              
            heat(ii,jj)=Kf*delta_time*((T(ii,jj)-T(ii+1,jj))*area_rad & 
                 +(T(ii,jj)-T(ii,jj-1))*area_theta) 
         END IF 
 
! lower corner -- 
         IF (jj==2.AND.(ii == g%nr-(bubb_step+1)))THEN             
            area_rad =  pi*((0.5*(R(ii)+R(ii+1)))**2)*& 
                 ((0.5*(Theta(jj+1)+Theta(jj)))**2)/delta_r(ii)              
            call conddt(T(ii,jj),Kf)              
            heat(ii,jj)=Kf*delta_time*(T(ii,jj)-T(ii+1,jj))*area_rad 
         END IF 
 
! upper corner -- 
         IF (jj==2.AND.(ii == g%nr+1))THEN             
            area_rad =  pi*((0.5*(R(ii)+R(ii-1)))**2)*& 
                 ((0.5*(Theta(jj+1)+Theta(jj)))**2)/delta_r(ii-1)              
            call conddt(T(ii,jj),Kf)             
            heat(ii,jj)=Kf*delta_time*(T(ii,jj)-T(ii-1,jj))*area_rad             
         END IF 
!!--------------------------------------------------------------------- 
!! we have to distinguish between odd and even bubble steps 
 
         IF (mod(bubb_step,2)==0) THEN 
! --- even bubble steps 
! right corner -- 

            IF ((jj==2+(1+bubb_step*0.5)).AND.(ii == g%nr-
bubb_step*0.5))THEN                
               area_theta = pi*delta_r(ii)*(Theta(jj)+Theta(jj-1))/delta_t(jj-1) 
               call conddt(T(ii,jj),Kf)              
               heat(ii,jj)=Kf*delta_time*(T(ii,jj)-T(ii,jj-1))*area_theta                
            END IF 
         ELSE 
             
! --- odd bubble steps 
! right corners --- 
            IF (ii ==(g%nr-bubb_step*0.5+0.5).AND.& 
                 (jj ==(2.0+(0.5+bubb_step*0.5))))THEN               
               area_theta = pi*delta_r(ii)*(Theta(jj)+Theta(jj-1))/delta_t(jj-1) 
                
               call conddt(T(ii,jj),Kf)    
               heat(ii,jj)=Kf*delta_time*(T(ii,jj)-T(ii,jj-1))*area_theta            
END IF 
 IF (ii ==(g%nr-bubb_step*0.5-0.5).AND.& 
                 (jj ==(2.0+(0.5+bubb_step*0.5))))THEN 
 
               area_theta = pi*delta_r(ii)*(Theta(jj)+Theta(jj-1))/delta_t(jj-1)            
               call conddt(T(ii,jj),Kf)  
               heat(ii,jj)=Kf*delta_time*(T(ii,jj)-T(ii,jj-1))*area_theta 
      END IF 
   END IF 
END DO 
END DO 
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APPENDIX G  

 The Diffusion Model 
 
%% This code includes some parametric studies in the  
%% diffusion of He3 through solid DT assuming that there is a single  
%% void that acts as a irreversible trap for the He3.  
%% This code will also account for the He3 buildup due to  
%% the Tritium decay. Written by Kurt Boehm 
 
clear all  
 
D=1.155E-16;          %% diffusion coefficient (m^2/s) 
R=0.3E-6;              %% different radii  (m) 
delta_t=300;         %% time step (s) 
grid_pts=5000;         %% number of grid points along the radius 
delta_r=R/grid_pts;   %% delta radius (m) 
n_time=12;              %% number of time steps 
RATE = 4.46363E-10;      %% production rate (mols of He-3/second) 
 
temp=delta_t*D/((delta_r)^2); 
%% calculate grid 
for i=1:grid_pts+1 
grid (i)      = (i-1)*delta_r;  
end 
 
tot_vol=0; 
 
for i=1:grid_pts 
delta_vol (i) = (grid(i+1)^3 - grid(i)^3)*4*pi/3; 
end 
 
%% initialize the points 
 

C(1:grid_pts+1,1)=0;      %% initial concentration 
totHe3(1)=0;            %%  
 
for t=1:n_time 
    t 
    for y=1:grid_pts+1   %% adding He-3 due to decay over the time step  
         g(y)=C(y,t)+RATE*delta_t; 
     end 
          
    for j=2:grid_pts  
     
    a(j)=(-1/j-1)*temp; 
    b(j)=1+2*temp; 
    c(j)=(1/j-1)*temp; 
         
    %% set boundary conditions: 
     
    end  
     
    a(grid_pts+1)=-1; 
    b(grid_pts+1)=1; 
    b(1)=1; 
    c(1)=0; 
     
    g(1)=0; 
    g(grid_pts+1)= 0; 
     
    g=thomas(a,b,c,g,grid_pts+1); 
     
    C(:,t+1)=g(:); 
  
 
     
% this little loop will calculate the molar flux of Helium 3 into bubble 
% mol of He-3/mol of DT at the present time step 
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    totHe3(t+1)=totHe3(t)+delta_t*RATE ; 
             
    for z=1:grid_pts 
         
        %% calculate the difference in concentration (mols of He-3 per 
mols) 
        %% of DT 
        delta_concentration (z) = totHe3(t+1)-
0.5*(C(z,t+1)+C(z+1,t+1)); 
 
        %% particles in the bubble are calculated 
        part_in_bub(z,t)= delta_concentration(z)*(6.022E23/19.88E-
6)*delta_vol(z); 
         
    end  
       He3_in_bub(t)=sum(part_in_bub(:,t)); 
        
end  
 
 figure(1),plot(grid,C(:,t+1)) 
 hold on 
 
% figure(2),plot(He3_in_bub) 
 
He3_in_bub(t) 
 
%plotting function:   
 
for i = 1:n_time 
figure(2),plot(grid,C(:,i)) 
hold on 
 
axis([0 R 0 abs(max(C(:,n_time)))]) 
 
pause(.01) 
end 
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APPENDIX H  

Analyzing the LANL Melt Layer Thickness 
 

Since the reports from the LANL experiments [24] reported an unexpected 
large melt layer for very early times after the start of the heat pulse, this calculation 
has been done to check whether it is physically possible to achieve such high melt 
layer thicknesses that early in the experiment.  

In the present scenario, we assume the temperature of the cylindrical target to 
be 19.79 K solid DT. All the heat flowing in will be used to melt the DT, the liquid 
will not be heated up past 19.79 K. First, we figure out, how much heat is required to 
melt 50 um of DT.  
 
The melted volume per unit height is:  ( ) 2722 102046.6 mrrV innerouter

−⋅=−⋅= π  
 

In moles  moles
E
E

v
V

liquid

21074.2
66.22
112046.6 −⋅=

−
−

=  

 
Energy = number of moles * latent heat of vaporization: 

69.62446745.2 =⋅−
mole

JmolesE Joules per unit height 

 
Then we compute the heat flown into the target  
 
Q= heat flux * time * surface area 
 

51.2202.010000 2 =⋅⋅⋅⋅
⋅

= outerrs
ms
JQ π Joules per unit height 

 
Even if all the incoming heat is used to melt the solid DT, the melt layer cannot have 
moved inward for more than 
 

mmrE

mole
J
J

outer 9814.1166.22
244

51.2 2 =−−−
π

 

 
This corresponds to a melt layer thickness of 18.5 um.  
 



APPENDIX I 

Plotting in MATLAB 
 
%% CYLINDER CASE 
 clear all 
 
Ri=0.001533; 
Cs=0.9; 
Cst=2.0; 
Nr=100; 
Nt=75; 
Ang=pi/16.0;  
            for j=1:Nt+1 
    theta(j)=0.5*Ang*(sinh(-Cst+(2*Cst*(j-1)/Nt))/(sinh(Cst))); 
end 
for j=1:Nt  
    dt_inner(j)=(theta(j+1)-theta(j))*0.002; 
    dt_outer(j)=(theta(j+1)-theta(j))*Ri; 
end  
for i=1:Nr+1 
    r(i)=Ri+(tanh(Cs*((i-1)/Nr))/tanh(Cs))*0.000467; 
end  
for i=1:Nr 
    dr(i)=r(i+1)-r(i); 
end 
[th,r]=meshgrid(theta,r); 
[X,Y]= pol2cart(th,r); 
timesteps=28; 
for time=1:timesteps, for i=1:Nr+1, for j=1:Nt+1 
    Temp(time,i,j)=output(time,(j-1)*101+i); 
end, end, end 
for f=1:timesteps 

Z(:,:)=Temp(f,:,:); 
surf(X,Y,Z) 
% if Z > 20.46 
%     return 
% end  
pause(0.5) 
end 
 
%% SPHERICAL CASE 
clear all 
Ri=0.001533; 
Ro=0.002; 
Cs=0.92; 
Cst=3.15; 
Nr=100; 
Nt=75; 
Ang=pi/16;  
for j=1:Nt+2 
    theta(j)=Ang*(sinh((Cst*(j-1.5)/Nt))/(sinh(Cst))); 
end 
for i=1:Nr+1 
    r(i)=Ri+(tanh(Cs*((i-2)/(Nr-1)))/tanh(Cs))*(Ro-Ri); 
end  
for i=1:Nr 
    dr(i)=r(i+1)-r(i); 
end 
[th,r]=meshgrid(theta,r); 
[X,Y]= pol2cart(th,r); 
timesteps=5; 
for time=1:timesteps, for i=1:Nr+1, for j=1:Nt+2 
    Temp(time,i,j)=output(time,(j-1)*(Nr+1)+i); 
end, end, end 
for f=1:timesteps 
Z(:,:)=Temp(f,:,:); 
surf(X,Y,Z) 
end 
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